Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 2, pp 398–407 | Cite as

Fabrication and Mechanical Evaluation of Anatomically-Inspired Quasilaminate Hydrogel Structures with Layer-Specific Formulations

  • Hubert Tseng
  • Maude L. Cuchiara
  • Christopher A. Durst
  • Michael P. Cuchiara
  • Chris J. Lin
  • Jennifer L. West
  • K. Jane Grande-Allen
Article

Abstract

A major tissue engineering challenge is the creation of multilaminate scaffolds with layer-specific mechanical properties representative of native tissues, such as heart valve leaflets, blood vessels, and cartilage. For this purpose, poly(ethylene glycol) diacrylate (PEGDA) hydrogels are attractive materials due to their tunable mechanical and biological properties. This study explored the fabrication of trilayer hydrogel quasilaminates. A novel sandwich method was devised to create quasilaminates with layers of varying stiffnesses. The trilayer structure was comprised of two “stiff” outer layers and one “soft” inner layer. Tensile testing of bilayer quasilaminates demonstrated that these scaffolds do not fail at the interface. Flexural testing showed that the bending modulus of acellular quasilaminates fell between the bending moduli of the “stiff” and “soft” hydrogel layers. The bending modulus and swelling of trilayer scaffolds with the same formulations were not significantly different than single layer gels of the same formulation. The encapsulation of cells and the addition of phenol red within the hydrogel layers decreased bending modulus of the trilayer scaffolds. The data presented demonstrates that this fabrication method can make quasilaminates with robust interfaces, integrating layers of different mechanical properties and biofunctionalization, and thus forming the foundation for a multilaminate scaffold that more accurately represents native tissue.

Keywords

Tissue Engineering Biomaterials Hydrogels Laminate Composites Flexure 

Notes

Acknowledgments

This work was supported by March of Dimes Research Grant 1-FY08-409; an American Heart Association Predoctoral Fellowship (to H.T.); and NIH R01HL107765. Flexural data analysis was performed in part using the Shared University Grid at Rice funded by NSF (EIA-0216467), and a partnership between Rice University, Sun Microsystems, and Sigma Solutions, Inc. The authors thank Roger Moye, Rice University, for assistance with supercomputing, as well as Joseph Hoffmann, Rice University, for the use of his fluorescent PEG peptides.

References

  1. 1.
    Benoit, D. S. W., M. P. Schwartz, A. R. Durney, and K. S. Anseth. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 7:816–823, 2008.PubMedCrossRefGoogle Scholar
  2. 2.
    Benton, J. A., H. B. Kern, and K. S. Anseth. Substrate properties influence calcification in valvular interstitial cell culture. J. Heart Valve Dis. 17:689–699, 2008.PubMedGoogle Scholar
  3. 3.
    Browning, M. B., T. Wilems, M. S. Hahn, and E. Cosgriff-Hernandez. Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size. J. Biomed. Mater. Res. A 98:268–273, 2011.PubMedGoogle Scholar
  4. 4.
    Cha, C., S. Y. Kim, L. Cao, and H. Kong. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Biomaterials 31:4864–4871, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Chou, A. I., S. O. Akintoye, and S. B. Nicoll. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthritis Cartilage 17:1377–1384, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Cruise, G. M., D. S. Scharp, and J. A. Hubbell. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Cuchiara, M. P., A. C. B. Allen, T. M. Chen, J. S. Miller, and J. L. West. Multilayer microfluidic PEGDA hydrogels. Biomaterials 31:5491–5497, 2010.PubMedCrossRefGoogle Scholar
  8. 8.
    Culver, J. C., J. C. Hoffmann, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24:2344–2348, 2012.PubMedCrossRefGoogle Scholar
  9. 9.
    Durst, C. A., M. P. Cuchiara, E. G. Mansfield, J. L. West, and K. J. Grande-Allen. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 7:2467–2476, 2011.PubMedCrossRefGoogle Scholar
  10. 10.
    Elisseeff, J. H., C. Puleo, F. Yang, and B. Sharma. Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res. 8:150–161, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Gloeckner, D. C., K. L. Billiar, and M. S. Sacks. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve. ASAIO J. 45:59–63, 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Hoffmann, J. C., and J. L. West. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter 6:5056–5063, 2010.CrossRefGoogle Scholar
  13. 13.
    Humzah, M. D., and R. W. Soames. Human intervertebral disc: structure and function. Anat. Rec. 220:337–356, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Jones, R. M. Mechanics of Composite Materials. Boca Raton, FL: CRC Press, 1975.Google Scholar
  15. 15.
    Karpiak, J. V., Y. Ner, and A. Almutairi. Density gradient multilayer polymerization for creating complex tissue. Adv. Mater. 24:1466–1470, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Khetan, S., and J. A. Burdick. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Khetan, S., J. S. Katz, and J. A. Burdick. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5:1601–1606, 2009.CrossRefGoogle Scholar
  18. 18.
    Kim, T.-K., B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, and J. H. Elisseeff. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage 11:653–664, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Lu, S., and K. S. Anseth. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Control Release 57:291–300, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu, S., W. F. Ramirez, and K. S. Anseth. Photopolymerized, multilaminated matrix devices with optimized nonuniform initial concentration profiles to control drug release. J. Pharm. Sci. 89:45–51, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Marklein, R. A., and J. A. Burdick. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6:136–143, 2010.CrossRefGoogle Scholar
  22. 22.
    Masters, K. S., D. N. Shah, L. A. Leinwand, and K. S. Anseth. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26:2517–2525, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Mirnajafi, A., J. M. Raymer, M. J. Scott, and M. S. Sacks. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26:795–804, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Misfeld, M., and H–. H. Sievers. Heart valve macro- and microstructure. Philos. Trans. R. Soc. Lond. B 362:1421–1436, 2007.CrossRefGoogle Scholar
  25. 25.
    Nemir, S., H. N. Hayenga, and J. L. West. PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105:636–644, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Nerurkar, N. L., D. M. Elliott, and R. L. Mauck. Mechanical design criteria for intervertebral disc tissue engineering. J. Biomech. 43:1017–1030, 2010.PubMedCrossRefGoogle Scholar
  27. 27.
    Nguyen, L. H., A. K. Kudva, N. S. Saxena, and K. Roy. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32:6946–6952, 2011.PubMedCrossRefGoogle Scholar
  28. 28.
    Nguyen, K. T., and J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314, 2002.PubMedCrossRefGoogle Scholar
  29. 29.
    Niinomi, M. Metallic biomaterials. J. Artif. Organs 11:105–110, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Pavlukhina, S., and S. Sukhishvili. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv. Drug Deliv. Rev. 63:822–836, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Peyton, S. R., C. B. Raub, V. P. Keschrumrus, and A. J. Putnam. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391:S26–S33, 2001.PubMedCrossRefGoogle Scholar
  33. 33.
    Shepperd, J. A. N., and H. Apthorp. A contemporary snapshot of the use of hydroxyapatite coating in orthopaedic surgery. J. Bone Joint Surg. Br. 87:1046–1049, 2005.PubMedCrossRefGoogle Scholar
  34. 34.
    Silver, F. H., D. L. Christiansen, and C. M. Buntin. Mechanical properties of the aorta: a review. Crit. Rev. Biomed. Eng. 17:323–358, 1989.PubMedGoogle Scholar
  35. 35.
    Stephens, E. H., J. L. Carroll, and K. J. Grande-Allen. The use of collagenase III for the isolation of porcine aortic valvular interstitial cells: rationale and optimization. J. Heart Valve Dis. 16:175–183, 2007.PubMedGoogle Scholar
  36. 36.
    Temenoff, J. S., K. A. Athanasiou, R. G. LeBaron, and A. G. Mikos. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. 59:429–437, 2002.PubMedCrossRefGoogle Scholar
  37. 37.
    Tseng, H., and K. J. Grande-Allen. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomater. 7:2101–2108, 2011.PubMedCrossRefGoogle Scholar
  38. 38.
    Vesely, I., D. R. Boughner, and T. Song. Tissue buckling as a mechanism of bioprosthetic valve failure. Ann. Thorac. Surg. 46:302–308, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Hubert Tseng
    • 1
  • Maude L. Cuchiara
    • 1
  • Christopher A. Durst
    • 1
  • Michael P. Cuchiara
    • 1
  • Chris J. Lin
    • 2
  • Jennifer L. West
    • 1
  • K. Jane Grande-Allen
    • 1
  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.College of MedicineTexas A&M University Health Science CenterTempleUSA

Personalised recommendations