Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 2, pp 316–326 | Cite as

Inflammatory Response Assessment of a Hybrid Tissue-Engineered Heart Valve Leaflet

  • S. Hamed Alavi
  • Wendy F. Liu
  • Arash Kheradvar
Article

Abstract

Despite substantial research in the past few decades, only slight progress has been made toward developing biocompatible, tissue-engineered scaffolds for heart valve leaflets that can withstand the dynamic pressure inside the heart. Recent progress on the development of hybrid scaffolds, which are composed of a thin metal mesh enclosed by multi-layered tissue, appear to be promising for heart valve engineering. This approach retains all the advantages of biological scaffolds while developing a strong extracellular matrix backbone to withstand dynamic loading. This study aims to test the inflammatory response of hybrid tissue-engineered leaflets based on characterizing the activation of macrophage cells cultured on the surfaces of the tissue construct. The results indicate that integration of biological layers around a metal mesh core—regardless of its type—may reduce the evoked inflammatory responses by THP-1 monocyte-like cells. This observation implies that masking a metal implant within a tissue construct prior to implantation can hide it from the immune system and may improve the implant’s biocompatibility.

Keywords

Hybrid heart valve THP-1 cell line Inflammatory response Metal mesh scaffold 

Notes

Acknowledgments

This work is partially supported by a Coulter Translational Research Award (CTRA) by the Wallace H. Coulter Foundation and a seed grant from the Edwards Lifesciences Center for Advanced Cardiovascular Technology at UC Irvine that was provided to Dr. Kheradvar.

References

  1. 1.
    Alavi, S. H., and A. Kheradvar. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C Methods 18:293–301, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson, J. M. Inflammatory response to implants. ASAIO J. 34:101, 1988.CrossRefGoogle Scholar
  3. 3.
    Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Apte, S. S., A. Paul, S. Prakash, and D. Shum-Tim. Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Futur. Cardiol. 7:77–97, 2011.CrossRefGoogle Scholar
  5. 5.
    Auwerx, J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Cell. Mol. Life Sci. 47:22–31, 1991.CrossRefGoogle Scholar
  6. 6.
    Boontheekul, T., and D. J. Mooney. Protein-based signaling systems in tissue engineering. Curr. Opin. Biotechnol. 14:559–565, 2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Breuer, C. K., B. A. Mettler, T. Anthony, V. L. Sales, F. J. Schoen, and J. E. Mayer. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 10:1725–1736, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Butcher, J. T., and R. M. Nerem. Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J. Heart Valve Dis. 13:478–486, 2004.PubMedGoogle Scholar
  9. 9.
    Butcher, J. T., A. M. Penrod, A. J. García, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24:1429–1434, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Chester, A. H., and P. M. Taylor. Molecular and functional characteristics of heart-valve interstitial cells. Philos. Trans. R. Soc. B: Biol. Sci. 362:1437–1443, 2007.CrossRefGoogle Scholar
  11. 11.
    Filip, D., A. Radu, and M. Simionescu. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ. Res. 59:310–320, 1986.PubMedCrossRefGoogle Scholar
  12. 12.
    Flanagan, T. C., and A. Pandit. Living artificial heart valve alternatives: a review. Eur. Cell Mater. 6:28–45, 2003.PubMedGoogle Scholar
  13. 13.
    Frankenberger, M., A. Pforte, T. Sternsdorf, B. Passlick, P. Baeuerle, and H. Ziegler-Heitbrock. Constitutive nuclear NF-kappa B in cells of the monocyte lineage. Biochem. J. 304:87, 1994.PubMedGoogle Scholar
  14. 14.
    Grande-Allen, K., and J. Liao. The heterogeneous biomechanics and mechanobiology of the mitral valve: implications for tissue engineering. Curr. Cardiol. Rep. 13:113–120.Google Scholar
  15. 15.
    Hammermeister, K. E., G. K. Sethi, W. G. Henderson, C. Oprian, T. Kim, and S. Rahimtoola. A comparison of outcomes in men 11 years after heart-valve replacement with a mechanical valve or bioprosthesis. N. Engl. J. Med. 328:1289–1296, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    Heil, T., K. Volkmann, J. Wataha, and P. Lockwood. Human peripheral blood monocytes versus THP-1 monocytes for in vitro biocompatibility testing of dental material components. J. Oral Rehabil. 29:401–407, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102(III):44–49, 2000.Google Scholar
  18. 18.
    Klinger, A., D. Steinberg, D. Kohavi, and M. Sela. Mechanism of adsorption of human albumin to titanium in vitro. J. Biomed. Mater. Res. 36:387–392, 1997.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, S., F. Brennan, J. Jacobs, R. Urban, D. Ragasa, and T. Glant. Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J. Orthop. Res. 15:40–49, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, W. F., M. Ma, K. M. Bratlie, T. T. Dang, R. Langer, and D. G. Anderson. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32:1796–1801, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Lynn, A., I. Yannas, and W. Bonfield. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B Appl. Biomater. 71:343–354, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Ma, M., W. F. Liu, P. S. Hill, K. M. Bratlie, D. J. Siegwart, J. Chin, M. Park, J. Guerreiro, and D. G. Anderson. Development of cationic polymer coatings to regulate foreign‐body responses. Adv. Mater. 2011.Google Scholar
  23. 23.
    Mendelson, K., and F. Schoen. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34:1799–1819, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Rabkin, E., and F. J. Schoen. Cardiovascular tissue engineering. Cardiovasc. Pathol. 11:305–317, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Rabkin-Aikawa, E., J. E. Mayer, Jr., and F. J. Schoen. Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 94:141–179, 2005.PubMedGoogle Scholar
  26. 26.
    Ryhänen, J. Biocompatibility evaluation of nickel-titanium shape memory metal alloy. Oulun yliopisto, 1999.Google Scholar
  27. 27.
    Sacks, M. S., F. J. Schoen, and J. E. Mayer. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289–313, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Schoen, F. J., and R. J. Levy. Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47:439–465, 1999.PubMedCrossRefGoogle Scholar
  29. 29.
    Shah, S. R., and N. R. Vyavahare. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials 29:1645–1653, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:164–168, 1996.Google Scholar
  32. 32.
    Steinhoff, G., U. Stock, N. Karim, H. Mertsching, A. Timke, R. R. Meliss, K. Pethig, A. Haverich, and A. Bader. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(III):50–55, 2000.Google Scholar
  33. 33.
    Stephens, E. H., N. de Jonge, M. P. McNeill, C. A. Durst, and K. J. Grande-Allen. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng. Part A 16:867–878, 2009.CrossRefGoogle Scholar
  34. 34.
    Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Thierry, B., M. Tabrizian, C. Trepanier, O. Savadogo, and L. H. Yahia. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. J. Biomed. Mater. Res. 51:685–693, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsuchiya, S., Y. Kobayashi, Y. Goto, H. Okumura, S. Nakae, T. Konno, and K. Tada. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42:1530, 1982.PubMedGoogle Scholar
  37. 37.
    van Geemen, D., P. Riem Vis, S. Soekhradj-Soechit, J. Sluijter, M. de Liefde-van Beest, J. Kluin, and C. Bouten. Decreased mechanical properties of heart valve tissue constructs cultured in platelet lysate as compared to fetal bovine serum. Tissue Eng. Part C Methods 7:607–617, 2011.CrossRefGoogle Scholar
  38. 38.
    Vesely, I. Heart valve tissue engineering. Circ. Res. 97:743–755, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Vince, D. G., J. A. Hunt, and D. F. Williams. Quantitative assessment of the tissue response to implanted biomaterials. Biomaterials 12:731–736, 1991.PubMedCrossRefGoogle Scholar
  40. 40.
    Wataha, J., P. Lockwood, M. Marek, and M. Ghazi. Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. J. Biomed. Mater. Res. 45:251–257, 1999.PubMedCrossRefGoogle Scholar
  41. 41.
    Wataha, J. C., S. Ratanasathien, C. T. Hanks, and Z. Sun. In vitro IL-1 [beta] and TNF-[alpha] release from THP-1 monocytes in response to metal ions. Dent. Mater. 12:322–327, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • S. Hamed Alavi
    • 1
  • Wendy F. Liu
    • 1
  • Arash Kheradvar
    • 1
  1. 1.The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department Biomedical EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations