Annals of Biomedical Engineering

, Volume 41, Issue 8, pp 1595–1603 | Cite as

Gait Variability is Altered in Older Adults When Listening to Auditory Stimuli with Differing Temporal Structures

  • Jeffrey P. Kaipust
  • Denise McGrath
  • Mukul Mukherjee
  • Nicholas StergiouEmail author


Gait variability in the context of a deterministic dynamical system may be quantified using nonlinear time series analyses that characterize the complexity of the system. Pathological gait exhibits altered gait variability. It can be either too periodic and predictable, or too random and disordered, as is the case with aging. While gait therapies often focus on restoration of linear measures such as gait speed or stride length, we propose that the goal of gait therapy should be to restore optimal gait variability, which exhibits chaotic fluctuations and is the balance between predictability and complexity. In this context, our purpose was to investigate how listening to different auditory stimuli affects gait variability. Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 min while listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. Stride length, step width, and stride intervals were calculated for all conditions. Detrended Fluctuation Analysis was then performed on these time series. A quadratic trend analysis determined that an idealized inverted-U shape described the relationship between gait variability and the structure of the auditory stimuli for the elderly group, but not for the young group. This proof-of-concept study shows that the gait of older adults may be manipulated using auditory stimuli. Future work will investigate which structures of auditory stimuli lead to improvements in functional status in older adults.


Detrended Fluctuation Analysis Chaos Fractal scaling Metronome Walking Locomotion Complexity 



Funding was provided by NIH/NIA (R01AG034995), Nebraska Research Initiative, and the NASA EPSCoR (NNX11AM06A).

Conflict of interest

There are no conflicts of interest relating to this manuscript.


  1. 1.
    Buzzi, U. H., N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. 18(5):435–443, 2003.CrossRefGoogle Scholar
  2. 2.
    Chen, Z., P. C. Ivanov, K. Hu, and H. E. Stanley. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 65(4):041107, 2002.CrossRefGoogle Scholar
  3. 3.
    Damouras, S., M. D. Chang, E. Sejdic, and T. Chau. An empirical examination of detrended fluctuation analysis for gait data. Gait Posture 31(3):336–340, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Delignieres, D., and K. Torre. Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J. Appl. Physiol. 106(4):1272–1279, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Delignieres, D., K. Torre, and P.-L. Bernard. Transition from persistent to anti-persistent correlations in postural sway indicates velocity-based control. PLoS Comput. Biol. 7(2):e1001089, 2011.PubMedCrossRefGoogle Scholar
  6. 6.
    Dingwell, J. B., J. John, and J. P. Cusumano. Do humans optimally exploit redundancy to control step variability in walking? PLoS Comput. Biol. 6(7):e1000856, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Dutta, P., and P. M. Horn. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53(3):497–516, 1981.CrossRefGoogle Scholar
  8. 8.
    Goldberger, A. L., L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl Acad. Sci. USA 99(Suppl 1):2466–2472, 2002.PubMedCrossRefGoogle Scholar
  9. 9.
    Hausdorff, J. M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26(4):555–589, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Hausdorff, J. M., S. L. Mitchell, R. e. Firtion, C. K. Peng, M. E. Cudkowicz, J. Y. Wei, A. L. Goldberger, et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 82(1):262–269, 1997.PubMedGoogle Scholar
  11. 11.
    Hausdorff, J. M., C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 78(1):349–358, 1995.PubMedGoogle Scholar
  12. 12.
    Hausdorff, J. M., P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, and A. R. Goldberger. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuation. J. Appl. Physiol. 80:1448–1457, 1996.PubMedGoogle Scholar
  13. 13.
    Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82(8):1050–1056, 2001.PubMedCrossRefGoogle Scholar
  14. 14.
    Herman, T., N. Giladi, T. Gurevich, and J. M. Hausdorff. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait Posture 21(2):178–185, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Hove, M. J., K. Suzuki, H. Uchitomi, S. Orimo, and Y. Miyake. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS ONE 7(3):e32600, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Ivanov, P. C., Q. D. Y. Ma, R. P. Bartsch, J. M. Hausdorff, L. S. A. Nunes Amaral, V. Schulte-Frohlinde, H. E. Yoneyama, M. Yoneyama, et al. Levels of complexity in scale-invariant neural signals. Phys. Rev. E 79(4):041920, 2009.CrossRefGoogle Scholar
  17. 17.
    Jordan, K., J. H. Challis, J. P. Cusumano, and K. M. Newell. Stability and the time-dependent structure of gait variability in walking and running. Hum. Mov. Sci. 28(1):113–128, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Karmakar, C., A. Khandoker, R. Begg, and M. Palaniswami. Understanding ageing effects using complexity analysis of foot-ground clearance during walking. Comput. Methods Biomech. Biomed. Eng. 1–11, 2012. doi: 10.1080/10255842.2011.628943.
  19. 19.
    Keppel, G. Analysis of trend. In: Design and Analysis: A Researcher’s Handbook, edited by S. Finnmore. Saddle River, NJ: Prentice Hall, 1991, pp. 142–148.Google Scholar
  20. 20.
    Kurz, M. J., and N. Stergiou. Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model. J. Biomech. Eng. 129(2):216–222, 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    Marks-Tarlow, T. The self as a dynamical system. Nonlin. Dyn. Psychol. Life Sci. 3(4):311–345, 1999.CrossRefGoogle Scholar
  22. 22.
    Moraiti, C. O., N. Stergiou, S. Ristanis, H. S. Vasiliadis, K. Patras, C. Lee, and A. D. Georgoulis. The effect of anterior cruciate ligament reconstruction on stride-to-stride variability. Arthroscopy 25(7):742–749, 2009.PubMedCrossRefGoogle Scholar
  23. 23.
    Myers, S. A., Johanning, J. M., Stergiou, N., Celis, R. I., Robinson, L., Pipinos, I. I. Gait variability is altered in patients with peripheral arterial disease. J. Vasc. Surg. 49(4):924–931.e921, 2009.Google Scholar
  24. 24.
    Neider, M. B., J. G. Gaspar, J. S. McCarley, J. A. Crowell, H. Kaczmarski, and A. F. Kramer. Walking and talking: dual-task effects on street crossing behavior in older adults. Psychol. Aging 26(2):260–268, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Painter, J. A., L. Allison, P. Dhingra, J. Daughtery, K. Cogdill, and L. G. Trujillo. Fear of falling and its relationship with anxiety, depression, and activity engagement among community-dwelling older adults. Am. J. Occup. Ther. 66(2):169–176, 2012.PubMedCrossRefGoogle Scholar
  26. 26.
    Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Peng, C. K., J. Mietus, Y. Liu, C. Lee, J. Hausdorff, H. E. Stanley, A. Goldberger, and L. Lipsitz. Quantifying fractal dynamics of human respiration: age and gender effects. Ann. Biomed. Eng. 30(5):683–692, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Pincus, S. M. Assessing serial irregularity and its implications for health. Ann. N. Y. Acad. Sci. 954(1):245–267, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Roerdink, M., C. J. Lamoth, G. Kwakkel, P. C. van Wieringen, and P. J. Beek. Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys. Ther. 87(8):1009–1022, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Scafetta, N., D. Marchi, and B. J. West. Understanding the complexity of human gait dynamics. J. Chaos 19(2):026108, 2009.CrossRefGoogle Scholar
  31. 31.
    Sejdic, E., Y. Fu, A. Pak, J. A. Fairley, and T. Chau. The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS ONE 7(8):e43104, 2012.PubMedCrossRefGoogle Scholar
  32. 32.
    Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30(5):869–888, 2011.PubMedCrossRefGoogle Scholar
  33. 33.
    Stergiou, N., R. T. Harbourne, and J. T. Cavanaugh. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Physiother. 30(3):120–129, 2006.Google Scholar
  34. 34.
    Terrier, P., and O. Dériaz. Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: influence of rhythmic auditory cueing. Hum. Mov. Sci., 2012. doi: 10.1016/j.humov.2012.05.004.
  35. 35.
    Terrier, P., V. Turner, and Y. Schutz. GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum. Mov. Sci. 24(1):97–115, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Thaut, M. H., A. K. Leins, R. R. Rice, H. Argstatter, G. P. Kenyon, G. C. McIntosh, H. V. Bolay, and M. Fetter. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind randomized trial. Neurorehabil. Neural Repair 21(5):455–459, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Toiviainen, P., and J. Snyder. Tapping to Bach: resonance-based modeling of pulse. Music Percept. 21(1):43–80, 2003.CrossRefGoogle Scholar
  38. 38.
    West, B. J., and N. Scafetta. Nonlinear dynamical model of human gait. Phys. Rev. E 67(5):051917, 2003.CrossRefGoogle Scholar
  39. 39.
    Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media Inc., 2002.Google Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Jeffrey P. Kaipust
    • 1
  • Denise McGrath
    • 1
  • Mukul Mukherjee
    • 1
  • Nicholas Stergiou
    • 1
    • 2
    Email author
  1. 1.Nebraska Biomechanics Core Facility, Department of Health, Physical Education, and RecreationUniversity of Nebraska at OmahaOmahaUSA
  2. 2.Department of Environmental, Agricultural & Occupational Health, College of Public HealthUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations