Spatiotemporal Mechanical Variation Reveals Critical Role for Rho Kinase During Primitive Streak Morphogenesis


Large-scale morphogenetic movements during early embryo development are driven by complex changes in biochemical and biophysical factors. Current models for amniote primitive streak morphogenesis and gastrulation take into account numerous genetic pathways but largely ignore the role of mechanical forces. Here, we used atomic force microscopy (AFM) to obtain for the first time precise biomechanical properties of the early avian embryo. Our data reveal that the primitive streak is significantly stiffer than neighboring regions of the epiblast, and that it is stiffer than the pre-primitive streak epiblast. To test our hypothesis that these changes in mechanical properties are due to a localized increase of actomyosin contractility, we inhibited actomyosin contractility via the Rho kinase (ROCK) pathway using the small-molecule inhibitor Y-27632. Our results using several different assays show the following: (1) primitive streak formation was blocked; (2) the time-dependent increase in primitive streak stiffness was abolished; and (3) convergence of epiblast cells to the midline was inhibited. Taken together, our data suggest that actomyosin contractility is necessary for primitive streak morphogenesis, and specifically, ROCK plays a critical role. To better understand the underlying mechanisms of this fundamental process, future models should account for the findings presented in this study.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Agero, U., J. A. Glazier, and M. Hosek. Bulk elastic properties of chicken embryos during somitogenesis. Biomed. Eng. Online 9:19, 2010.

  2. 2.

    Allison, P. D. Missing data (Sage University Papers Series on Quantitative Applications in the Social Sciences, 07–136). Thousand Oaks, CA: Sage Publications, Inc., pp. 27–36, 2002.

  3. 3.

    Alonso, J. L., and W. H. Goldmann. Feeling the forces: atomic force microscopy in cell biology. Life Sci. 72:2553–2560, 2003.

  4. 4.

    An, S. S., R. E. Laudadio, J. Lai, R. A. Rogers, and J. J. Fredberg. Stiffness changes in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283:C792–C801, 2002.

  5. 5.

    Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.

  6. 6.

    Chapman, S. C., J. Collignon, G. C. Schoenwolf, and A. Lumsden. Improved method for chick whole-embryo culture using a filter paper carrier. Dev. Dyn. 220:284–289, 2001.

  7. 7.

    Chuai, M., and C. J. Weijer. The mechanisms underlying primitive streak formation in the chick embryo. Curr. Top. Dev. Biol. 81:135–156, 2008.

  8. 8.

    Chuai, M., and C. J. Weijer. Who moves whom during primitive streak formation in the chick embryo. HFSP J. 3:71–76, 2009.

  9. 9.

    Chuai, M., and C. J. Weijer. Regulation of cell migration during chick gastrulation. Curr. Opin. Genet. Dev. 19:343–349, 2009.

  10. 10.

    Chuai, M., W. Zeng, X. Yang, V. Boychenko, J. A. Glazier, and C. J. Weijer. Cell movement during chick primitive streak formation. Dev. Biol. 296:137–149, 2006.

  11. 11.

    Conte, V., J. J. Munoz, B. Baum, and M. Miodownik. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 6:016010, 2009.

  12. 12.

    Czirók, A., P. Rupp, B. Rongish, and C. Little. Multi-field 3-d scanning light microscopy of early embryogenesis. J. Microsc. 206:209–217, 2002.

  13. 13.

    Davidson, L., G. Oster, R. Keller, and M. A. Koehl. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209:221–238, 1999.

  14. 14.

    DeJonge, M., D. Burchfield, B. Bloom, M. Duenas, W. Walker, M. Polak, E. Jung, D. Millard, R. Schelonka, F. Eyal, A. Morris, B. Kapik, D. Roberson, K. Kesler, J. Patti, and S. Hetherington. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J. Pediatr. 151:260–265, 265 e261, 2007.

  15. 15.

    Donders, A. R., G. J. van der Heijden, T. Stijnen, and K. G. Moons. Review: a gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59:1087–1091, 2006.

  16. 16.

    Eyal-Giladi, H., and S. Kochav. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49:321–337, 1976.

  17. 17.

    Hamburger, V., and H. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.

  18. 18.

    Hardin, J., and R. Keller. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230, 1988.

  19. 19.

    Hutter, J. L., and J. Bechhoefer. Calibration of atomic force microscope tips. Rev. Sci. Instrum. 64:1868–1873, 1993.

  20. 20.

    Johnson, K. Contact Mechanics. Cambridge: Cambridge University Press, 1985.

  21. 21.

    Johnson, K. L., K. Kendall, and A. D. Roberts. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A. Math. Phys. Sci. 324:301–313, 1971.

  22. 22.

    Lee, J. Y., and R. M. Harland. Actomyosin contractility and microtubules drive apical constriction in xenopus bottle cells. Dev. Biol. 311:40–52, 2007.

  23. 23.

    Moore, S., R. Keller, and M. Koehl. The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121:3131–3140, 1995.

  24. 24.

    Nakaya, Y., E. W. Sukowati, Y. Wu, and G. Sheng. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat. Cell Biol. 10:765–775, 2008.

  25. 25.

    New, D. A. T. A new technique for the cultivation of the chick embryo in vitro. J. Embryol. Exp. Morphol. 3:320–331, 1955.

  26. 26.

    Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.

  27. 27.

    Rupp, P., B. Rongish, A. Czirók, and C. Little. Culturing of avian embryos for time-lapse imaging. Biotechniques 34:274–278, 2003.

  28. 28.

    Sandersius, S. A., M. Chuai, C. J. Weijer, and T. J. Newman. A ‘chemotactic dipole’ mechanism for large-scale vortex motion during primitive streak formation in the chick embryo. Phys. Biol. 8:045008, 2011.

  29. 29.

    Sawyer, J. M., J. R. Harrell, G. Shemer, J. Sullivan-Brown, M. Roh-Johnson, and B. Goldstein. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341:5–19, 2010.

  30. 30.

    Trinkaus, J. Cells into Organs: The Forces that Shape the Embryo. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

  31. 31.

    Voiculescu, O., F. Bertocchini, L. Wolpert, R. E. Keller, and C. D. Stern. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052, 2007.

  32. 32.

    Wang, N., I. Tolic-Norrelykke, J. Chen, S. Mijailovich, J. Butler, J. Fredberg, and D. Stamenovic. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282:C606–C616, 2002.

  33. 33.

    Wei, L., K. Imanaka-Yoshida, L. Wang, S. Zhan, M. Schneider, F. DeMayo, and R. Schwartz. Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development 129:1705–1714, 2002.

  34. 34.

    Xu, W., N. Chahine, and T. Sulchek. Extreme hardening of PDMs thin films due to high compressive strain and confined thickness. Langmuir 27:8470–8477, 2011.

  35. 35.

    Zamir, E., and L. Taber. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. 126:276–283, 2004.

  36. 36.

    Zamir, E. A., B. J. Rongish, and C. D. Little. The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLoS Biol. 6:e247, 2008.

  37. 37.

    Zamir, E. A., V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 31:1327–1336, 2003.

  38. 38.

    Zamir, E. A., and L. A. Taber. Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126:823–830, 2004.

  39. 39.

    Zhou, J., H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688, 2009.

Download references


This work was supported by NSF Grant #1000604.

Conflict of interest

The authors have no conflict of interest to report.

Author information

Correspondence to Evan Zamir.

Additional information

Wenwei Xu and Drew Owen contributed equally to this work.

Associate Editor Eric M. Darling oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 1676 kb)

Supplementary material 2 (AVI 1256 kb)

Supplementary material 1 (AVI 1676 kb)

Supplementary material 2 (AVI 1256 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henkels, J., Oh, J., Xu, W. et al. Spatiotemporal Mechanical Variation Reveals Critical Role for Rho Kinase During Primitive Streak Morphogenesis. Ann Biomed Eng 41, 421–432 (2013).

Download citation


  • Atomic force microscopy
  • Gastrulation
  • Actomyosin contractility
  • Development
  • Y-27632
  • Time-lapse imaging
  • Biomechanics