Advertisement

Annals of Biomedical Engineering

, Volume 41, Issue 2, pp 421–432 | Cite as

Spatiotemporal Mechanical Variation Reveals Critical Role for Rho Kinase During Primitive Streak Morphogenesis

  • Julia Henkels
  • Jaeho Oh
  • Wenwei Xu
  • Drew Owen
  • Todd Sulchek
  • Evan ZamirEmail author
Article

Abstract

Large-scale morphogenetic movements during early embryo development are driven by complex changes in biochemical and biophysical factors. Current models for amniote primitive streak morphogenesis and gastrulation take into account numerous genetic pathways but largely ignore the role of mechanical forces. Here, we used atomic force microscopy (AFM) to obtain for the first time precise biomechanical properties of the early avian embryo. Our data reveal that the primitive streak is significantly stiffer than neighboring regions of the epiblast, and that it is stiffer than the pre-primitive streak epiblast. To test our hypothesis that these changes in mechanical properties are due to a localized increase of actomyosin contractility, we inhibited actomyosin contractility via the Rho kinase (ROCK) pathway using the small-molecule inhibitor Y-27632. Our results using several different assays show the following: (1) primitive streak formation was blocked; (2) the time-dependent increase in primitive streak stiffness was abolished; and (3) convergence of epiblast cells to the midline was inhibited. Taken together, our data suggest that actomyosin contractility is necessary for primitive streak morphogenesis, and specifically, ROCK plays a critical role. To better understand the underlying mechanisms of this fundamental process, future models should account for the findings presented in this study.

Keywords

Atomic force microscopy Gastrulation Actomyosin contractility Development Y-27632 Time-lapse imaging Biomechanics 

Notes

Acknowledgments

This work was supported by NSF Grant #1000604.

Conflict of interest

The authors have no conflict of interest to report.

Supplementary material

Supplementary material 1 (AVI 1676 kb)

Supplementary material 2 (AVI 1256 kb)

References

  1. 1.
    Agero, U., J. A. Glazier, and M. Hosek. Bulk elastic properties of chicken embryos during somitogenesis. Biomed. Eng. Online 9:19, 2010.PubMedCrossRefGoogle Scholar
  2. 2.
    Allison, P. D. Missing data (Sage University Papers Series on Quantitative Applications in the Social Sciences, 07–136). Thousand Oaks, CA: Sage Publications, Inc., pp. 27–36, 2002.Google Scholar
  3. 3.
    Alonso, J. L., and W. H. Goldmann. Feeling the forces: atomic force microscopy in cell biology. Life Sci. 72:2553–2560, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    An, S. S., R. E. Laudadio, J. Lai, R. A. Rogers, and J. J. Fredberg. Stiffness changes in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283:C792–C801, 2002.PubMedGoogle Scholar
  5. 5.
    Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    Chapman, S. C., J. Collignon, G. C. Schoenwolf, and A. Lumsden. Improved method for chick whole-embryo culture using a filter paper carrier. Dev. Dyn. 220:284–289, 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    Chuai, M., and C. J. Weijer. The mechanisms underlying primitive streak formation in the chick embryo. Curr. Top. Dev. Biol. 81:135–156, 2008.PubMedCrossRefGoogle Scholar
  8. 8.
    Chuai, M., and C. J. Weijer. Who moves whom during primitive streak formation in the chick embryo. HFSP J. 3:71–76, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Chuai, M., and C. J. Weijer. Regulation of cell migration during chick gastrulation. Curr. Opin. Genet. Dev. 19:343–349, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Chuai, M., W. Zeng, X. Yang, V. Boychenko, J. A. Glazier, and C. J. Weijer. Cell movement during chick primitive streak formation. Dev. Biol. 296:137–149, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Conte, V., J. J. Munoz, B. Baum, and M. Miodownik. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 6:016010, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Czirók, A., P. Rupp, B. Rongish, and C. Little. Multi-field 3-d scanning light microscopy of early embryogenesis. J. Microsc. 206:209–217, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Davidson, L., G. Oster, R. Keller, and M. A. Koehl. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209:221–238, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    DeJonge, M., D. Burchfield, B. Bloom, M. Duenas, W. Walker, M. Polak, E. Jung, D. Millard, R. Schelonka, F. Eyal, A. Morris, B. Kapik, D. Roberson, K. Kesler, J. Patti, and S. Hetherington. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J. Pediatr. 151:260–265, 265 e261, 2007.Google Scholar
  15. 15.
    Donders, A. R., G. J. van der Heijden, T. Stijnen, and K. G. Moons. Review: a gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59:1087–1091, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Eyal-Giladi, H., and S. Kochav. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49:321–337, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamburger, V., and H. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.CrossRefGoogle Scholar
  18. 18.
    Hardin, J., and R. Keller. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230, 1988.PubMedGoogle Scholar
  19. 19.
    Hutter, J. L., and J. Bechhoefer. Calibration of atomic force microscope tips. Rev. Sci. Instrum. 64:1868–1873, 1993.CrossRefGoogle Scholar
  20. 20.
    Johnson, K. Contact Mechanics. Cambridge: Cambridge University Press, 1985.Google Scholar
  21. 21.
    Johnson, K. L., K. Kendall, and A. D. Roberts. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A. Math. Phys. Sci. 324:301–313, 1971.CrossRefGoogle Scholar
  22. 22.
    Lee, J. Y., and R. M. Harland. Actomyosin contractility and microtubules drive apical constriction in xenopus bottle cells. Dev. Biol. 311:40–52, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Moore, S., R. Keller, and M. Koehl. The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121:3131–3140, 1995.PubMedGoogle Scholar
  24. 24.
    Nakaya, Y., E. W. Sukowati, Y. Wu, and G. Sheng. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat. Cell Biol. 10:765–775, 2008.PubMedCrossRefGoogle Scholar
  25. 25.
    New, D. A. T. A new technique for the cultivation of the chick embryo in vitro. J. Embryol. Exp. Morphol. 3:320–331, 1955.Google Scholar
  26. 26.
    Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.PubMedCrossRefGoogle Scholar
  27. 27.
    Rupp, P., B. Rongish, A. Czirók, and C. Little. Culturing of avian embryos for time-lapse imaging. Biotechniques 34:274–278, 2003.PubMedGoogle Scholar
  28. 28.
    Sandersius, S. A., M. Chuai, C. J. Weijer, and T. J. Newman. A ‘chemotactic dipole’ mechanism for large-scale vortex motion during primitive streak formation in the chick embryo. Phys. Biol. 8:045008, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Sawyer, J. M., J. R. Harrell, G. Shemer, J. Sullivan-Brown, M. Roh-Johnson, and B. Goldstein. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341:5–19, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Trinkaus, J. Cells into Organs: The Forces that Shape the Embryo. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.Google Scholar
  31. 31.
    Voiculescu, O., F. Bertocchini, L. Wolpert, R. E. Keller, and C. D. Stern. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, N., I. Tolic-Norrelykke, J. Chen, S. Mijailovich, J. Butler, J. Fredberg, and D. Stamenovic. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282:C606–C616, 2002.PubMedGoogle Scholar
  33. 33.
    Wei, L., K. Imanaka-Yoshida, L. Wang, S. Zhan, M. Schneider, F. DeMayo, and R. Schwartz. Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development 129:1705–1714, 2002.PubMedGoogle Scholar
  34. 34.
    Xu, W., N. Chahine, and T. Sulchek. Extreme hardening of PDMs thin films due to high compressive strain and confined thickness. Langmuir 27:8470–8477, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Zamir, E., and L. Taber. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. 126:276–283, 2004.PubMedCrossRefGoogle Scholar
  36. 36.
    Zamir, E. A., B. J. Rongish, and C. D. Little. The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLoS Biol. 6:e247, 2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Zamir, E. A., V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 31:1327–1336, 2003.PubMedCrossRefGoogle Scholar
  38. 38.
    Zamir, E. A., and L. A. Taber. Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126:823–830, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou, J., H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Julia Henkels
    • 1
  • Jaeho Oh
    • 1
  • Wenwei Xu
    • 1
  • Drew Owen
    • 1
  • Todd Sulchek
    • 1
  • Evan Zamir
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations