Annals of Biomedical Engineering

, Volume 40, Issue 10, pp 2079–2097 | Cite as

Isolation, Characterization, and Differentiation of Stem Cells for Cartilage Regeneration

  • Olivia S. Beane
  • Eric M. DarlingEmail author


The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.


Regenerative medicine Cell-based therapies Tissue engineering Chondrogenesis 



This work was supported in part by National Institutes of Health grant AR054673.


  1. 1.
    Afizah, H., Z. Yang, J. H. Hui, H. W. Ouyang, and E. H. Lee. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 13:659–666, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed, T. A., A. Giulivi, M. Griffith, and M. Hincke. Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute. Tissue Eng. Part A 17:323–335, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Aicher, W. K., H. J. Buhring, M. Hart, B. Rolauffs, A. Badke, and G. Klein. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells—potential and pitfalls. Adv. Drug Deliv. Rev. 63:342–351, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Al Battah, F., J. De Kock, E. Ramboer, A. Heymans, T. Vanhaecke, V. Rogiers, and S. Snykers. Evaluation of the multipotent character of human adipose tissue-derived stem cells isolated by Ficoll gradient centrifugation and red blood cell lysis treatment. Toxicol. In Vitro 25:1224–1230, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Alviano, F., V. Fossati, C. Marchionni, M. Arpinati, L. Bonsi, M. Franchina, G. Lanzoni, S. Cantoni, C. Cavallini, F. Bianchi, P. L. Tazzari, G. Pasquinelli, L. Foroni, C. Ventura, A. Grossi, and G. P. Bagnara. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7:11, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Andriamanalijaona, R., E. Duval, M. Raoudi, S. Lecourt, J. T. Vilquin, J. P. Marolleau, J. P. Pujol, P. Galera, and K. Boumediene. Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage 16:1509–1518, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Arnhold, S., S. Gluer, K. Hartmann, O. Raabe, K. Addicks, S. Wenisch, and M. Hoopmann. Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int. 2011:715341, 2011.PubMedGoogle Scholar
  8. 8.
    Aroen, A. Stem cell therapy for articular cartilage defects. Br. Med. Bull. 99:227–240, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Awad, H. A., M. Q. Wickham, H. A. Leddy, J. M. Gimble, and F. Guilak. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Bailey, M. M., L. Wang, C. J. Bode, K. E. Mitchell, and M. S. Detamore. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng. 13:2003–2010, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Baksh, D., R. Yao, and R. S. Tuan. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392, 2007.PubMedCrossRefGoogle Scholar
  12. 12.
    Barry, F., R. E. Boynton, B. S. Liu, and J. M. Murphy. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268:189–200, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Bilgen, B., Y. Ren, M. Pei, R. K. Aaron, and D. M. Ciombor. CD14-negative isolation enhances chondrogenesis in synovial fibroblasts. Tissue Eng. Part A 15:3261–3270, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Brooke, G., H. Tong, J. P. Levesque, and K. Atkinson. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev. 17:929–940, 2008.PubMedCrossRefGoogle Scholar
  15. 15.
    Bunnell, B. A., M. Flaat, C. Gagliardi, B. Patel, and C. Ripoll. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Caplan, A. I. Mesenchymal stem-cells. J. Orthop. Res. 9:641–650, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavallo, C., C. Cuomo, S. Fantini, F. Ricci, P. L. Tazzari, E. Lucarelli, D. Donati, A. Facchini, G. Lisignoli, P. M. Fornasari, B. Grigolo, and L. Moroni. Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. J. Cell. Biochem. 112:1418–1430, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Chang, Y. J., C. P. Tseng, L. F. Hsu, T. B. Hsieh, and S. M. Hwang. Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biol. Int. 30:495–499, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    Che, X., J. Guo, B. Wang, and Y. Bai. Rapid isolation of muscle-derived stem cells by discontinuous Percoll density gradient centrifugation. In Vitro Cell. Dev. Biol. Anim. 47:454–458, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng, N. C., B. T. Estes, H. A. Awad, and F. Guilak. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. Part A 15:231–241, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiou, M., Y. Xu, and M. T. Longaker. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells. Biochem. Biophys. Res. Commun. 343:644–652, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Choi, Y. H., M. D. Burdick, and R. M. Strieter. Human circulating fibrocytes have the capacity to differentiate osteoblasts and chondrocytes. Int. J. Biochem. Cell Biol. 42:662–671, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi, W. H., B. H. Choi, B. H. Min, and S. R. Park. Low-intensity ultrasound increased colony forming unit-fibroblasts of mesenchymal stem cells during primary culture. Tissue Eng. Part C 17:517–526, 2011.CrossRefGoogle Scholar
  24. 24.
    Choi, J. S., B. S. Kim, J. D. Kim, Y. C. Choi, H. Y. Lee, and Y. W. Cho. In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Tissue Eng. Part A 18:80–92, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Chong, P. P., L. Selvaratnam, A. A. Abbas, and T. Kamarul. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J. Orthop. Res. 30:634–642, 2011.PubMedCrossRefGoogle Scholar
  26. 26., 2012.
  27. 27.
    Coleman, R. M., N. D. Case, and R. E. Guldberg. Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 28:2077–2086, 2007.PubMedCrossRefGoogle Scholar
  28. 28.
    Cooke, M. E., A. A. Allon, T. Cheng, A. C. Kuo, H. T. Kim, T. P. Vail, R. S. Marcucio, R. A. Schneider, J. C. Lotz, and T. Alliston. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis Cartilage 19:1210–1218, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372, 2006.PubMedCrossRefGoogle Scholar
  30. 30.
    Danisovic, L., I. Varga, and S. Polak. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 44:69–73, 2012.PubMedCrossRefGoogle Scholar
  31. 31.
    Darling, E. M., M. Topel, S. Zauscher, T. P. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41:454–464, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    De Bari, C., F. Dell’Accio, P. Tylzanowski, and F. P. Luyten. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44:1928–1942, 2001.PubMedCrossRefGoogle Scholar
  33. 33.
    De Coppi, P., G. Bartsch, M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25:100–106, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    de Mara, C. S., A. S. Duarte, A. R. Sartori-Cintra, A. C. Luzo, S. T. Saad, and I. B. Coimbra. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6. Rheumatol. Int., 2012 [Epub ahead of print].Google Scholar
  35. 35.
    De Miguel, M. P., S. Fuentes-Julian, and Y. Alcaina. Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev. 6:633–649, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Deasy, B. M., L. I. Yong, and J. Huard. Tissue engineering with muscle-derived stem cells. Curr. Opin. Biotechnol. 15:419–423, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Diekman, B. O., C. R. Rowland, D. P. Lennon, A. I. Caplan, and F. Guilak. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng. Part A 16:523–533, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Draper, J. S., C. Pigott, J. A. Thomson, and P. W. Andrews. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200:249–258, 2002.PubMedCrossRefGoogle Scholar
  39. 39.
    Ebben, J. D., M. Zorniak, P. A. Clark, and J. S. Kuo. Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg. 76:270–275, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Erices, A., P. Conget, and J. J. Minguell. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109:235–242, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Estes, B. T., B. O. Diekman, J. M. Gimble, and F. Guilak. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 5:1294–1311, 2010.PubMedCrossRefGoogle Scholar
  42. 42.
    Fan, J. B., L. Ren, R. S. Liang, Y. H. Gong, D. Z. Cai, and D. A. Wang. Chondrogenesis of synovium-derived mesenchymal stem cells in photopolymerizing hydrogel scaffolds. J. Biomater. Sci. Polym. Ed. 21:1653–1667, 2010.PubMedCrossRefGoogle Scholar
  43. 43.
    Fan, J. B., R. R. Varshney, L. Ren, D. Z. Cai, and D. A. Wang. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng. Part B 15:75–86, 2009.CrossRefGoogle Scholar
  44. 44.
    Fong, C. Y., L. L. Chak, A. Biswas, J. H. Tan, K. Gauthaman, W. K. Chan, and A. Bongso. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 7:1–16, 2011.PubMedCrossRefGoogle Scholar
  45. 45.
    Fong, C. Y., A. Subramanian, K. Gauthaman, J. Venugopal, A. Biswas, S. Ramakrishna, and A. Bongso. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev. 8:195–209, 2012.PubMedCrossRefGoogle Scholar
  46. 46.
    Friedenstein, A. J., U. F. Gorskaja, and N. N. Kulagina. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4:267–274, 1976.PubMedGoogle Scholar
  47. 47.
    Gharaibeh, B., A. Lu, J. Tebbets, B. Zheng, J. Feduska, M. Crisan, B. Peault, J. Cummins, and J. Huard. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat. Protoc. 3:1501–1509, 2008.PubMedCrossRefGoogle Scholar
  48. 48.
    Gong, G. C., D. Ferrari, C. N. Dealy, and R. A. Kosher. Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J. Cell. Physiol. 224:664–671, 2010.PubMedCrossRefGoogle Scholar
  49. 49.
    Griesche, N., W. Luttmann, A. Luttmann, T. Stammermann, H. Geiger, and P. C. Baer. A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells. Cells Tissues Organs 192:106–115, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Gronthos, S., and A. C. Zannettino. A method to isolate and purify human bone marrow stromal stem cells. Methods Mol. Biol. 449:45–57, 2008.PubMedGoogle Scholar
  51. 51.
    Han, H. S., S. Lee, J. H. Kim, S. C. Seong, and M. C. Lee. Changes in chondrogenic phenotype and gene expression profiles associated with the in vitro expansion of human synovium-derived cells. J. Orthop. Res. 28:1283–1291, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Harichandan, A., and H. J. Buhring. Prospective isolation of human MSC. Best practice & research. Clin. Haematol. 24:25–36, 2011.Google Scholar
  53. 53.
    He, Q., C. Wan, and G. Li. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 25:69–77, 2007.PubMedCrossRefGoogle Scholar
  54. 54.
    Hildner, F., A. Peterbauer, S. Wolbank, S. Nurnberger, S. Marlovits, H. Redl, M. van Griensven, and C. Gabriel. FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-beta in human adipose derived stem cells. J. Biomed. Mater. Res. A 94:978–987, 2010.PubMedGoogle Scholar
  55. 55.
    Ho, S. T., S. M. Cool, J. H. Hui, and D. W. Hutmacher. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials 31:38–47, 2010.PubMedCrossRefGoogle Scholar
  56. 56.
    Hsiao, F. S. H., C. C. Cheng, S. Y. Peng, H. Y. Huang, W. S. Lian, M. L. Jan, Y. T. Fang, E. C. H. Cheng, K. H. Lee, W. T. K. Cheng, S. P. Lin, and S. C. Wu. Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell Prolif. 43:235–248, 2010.PubMedCrossRefGoogle Scholar
  57. 57.
    Hsu, S. H., T. B. Huang, S. J. Cheng, S. Y. Weng, C. L. Tsai, C. S. Tseng, D. C. Chen, T. Y. Liu, K. Y. Fu, and B. L. Yen. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Eng. Part A 17:1549–1560, 2011.PubMedCrossRefGoogle Scholar
  58. 58.
    Hu, G., P. Liu, J. Feng, and Y. Jin. A novel population of mesenchymal progenitors with hematopoietic potential originated from CD14(−) peripheral blood mononuclear cells. Int. J. Med. Sci. 8:16–29, 2011.CrossRefGoogle Scholar
  59. 59.
    Huang, P., L. M. Lin, X. Y. Wu, Q. L. Tang, X. Y. Feng, G. Y. Lin, X. Lin, H. W. Wang, T. H. Huang, and L. Ma. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J. Cell. Biochem. 109:747–754, 2010.PubMedGoogle Scholar
  60. 60.
    Hwang, N. S., S. Varghese, and J. Elisseeff. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE 3:e2498, 2008.PubMedCrossRefGoogle Scholar
  61. 61.
    Igarashi, T., N. Iwasaki, D. Kawamura, Y. Kasahara, Y. Tsukuda, N. Ohzawa, M. Ito, Y. Izumisawa, and A. Minami. Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J. Biomed. Mater. Res. A 100:180–187, 2012.PubMedGoogle Scholar
  62. 62.
    Ilancheran, S., Y. Moodley, and U. Manuelpillai. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10, 2009.PubMedCrossRefGoogle Scholar
  63. 63.
    Im, G. I., H. J. Kim, and J. H. Lee. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 32:4385–4392, 2011.PubMedCrossRefGoogle Scholar
  64. 64.
    In ‘t Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, G. M. de Groot-Swings, F. H. Claas, W. E. Fibbe, and H. H. Kanhai. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345, 2004.PubMedCrossRefGoogle Scholar
  65. 65.
    In ‘t Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, W. A. Noort, F. H. J. Claas, R. Willemze, W. E. Fibbe, and H. H. H. Kanhai. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549, 2003.PubMedCrossRefGoogle Scholar
  66. 66.
    Jaager, K., S. Islam, P. Zajac, S. Linnarsson, and T. Neuman. RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells. PLoS ONE 7:e38833, 2012.PubMedCrossRefGoogle Scholar
  67. 67.
    Jankowski, R. J., B. M. Deasy, and J. Huard. Muscle-derived stem cells. Gene Ther. 9:642–647, 2002.PubMedCrossRefGoogle Scholar
  68. 68.
    Jin, X. B., Y. S. Sun, K. Zhang, J. Wang, T. P. Shi, X. D. Ju, and S. Q. Lou. Tissue engineered cartilage from hTGF beta2 transduced human adipose derived stem cells seeded in PLGA/alginate compound in vitro and in vivo. J. Biomed. Mater. Res. A 86:1077–1087, 2008.PubMedGoogle Scholar
  69. 69.
    Jones, E., and D. McGonagle. Synovial mesenchymal stem cells in vivo: potential key players for joint regeneration. World J. Rheumatol. 1:4–11, 2011.CrossRefGoogle Scholar
  70. 70.
    Jung, S. N., J. W. Rhie, H. Kwon, Y. J. Jun, J. W. Seo, G. Yoo, D. Y. Oh, S. T. Ahn, J. Woo, and J. Oh. In vivo cartilage formation using chondrogenic-differentiated human adipose-derived mesenchymal stem cells mixed with fibrin glue. J. Craniofac. Surg. 21:468–472, 2010.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaewkhaw, R., A. M. Scutt, and J. W. Haycock. Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia 59:734–749, 2011.PubMedCrossRefGoogle Scholar
  72. 72.
    Karlsson, C., C. Brantsing, T. Svensson, H. Brisby, J. Asp, T. Tallheden, and A. Lindahl. Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J. Orthop. Res. 25:152–163, 2007.PubMedCrossRefGoogle Scholar
  73. 73.
    Kassis, I., L. Zangi, R. Rivkin, L. Levdansky, S. Samuel, G. Marx, and R. Gorodetsky. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant. 37:967–976, 2006.PubMedCrossRefGoogle Scholar
  74. 74.
    Kern, S., H. Eichler, J. Stoeve, H. Kluter, and K. Bieback. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301, 2006.PubMedCrossRefGoogle Scholar
  75. 75.
    Khan, W. S., A. B. Adesida, S. R. Tew, E. T. Lowe, and T. E. Hardingham. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J. Orthop. Res. 28:834–840, 2010.PubMedGoogle Scholar
  76. 76.
    Kim, H. J., and G. I. Im. Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J. Orthop. Res. 27:612–619, 2009.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim, H. J., and G. I. Im. Combination of transforming growth factor-beta2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng. Part A 15:1543–1551, 2009.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim, H. J., J. H. Lee, and G. I. Im. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J. Biomed. Mater. Res. A 92:659–666, 2010.PubMedGoogle Scholar
  79. 79.
    Knutsen, G., L. Engebretsen, T. C. Ludvigsen, J. O. Drogset, T. Grontvedt, E. Solheim, T. Strand, S. Roberts, V. Isaksen, and O. Johansen. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 86A:455–464, 2004.Google Scholar
  80. 80.
    Koay, E. J., G. M. Hoben, and K. A. Athanasiou. Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25:2183–2190, 2007.PubMedCrossRefGoogle Scholar
  81. 81.
    Koga, H., T. Muneta, T. Nagase, A. Nimura, Y. J. Ju, T. Mochizuki, and I. Sekiya. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 333:207–215, 2008.PubMedCrossRefGoogle Scholar
  82. 82.
    Kolambkar, Y. M., A. Peister, S. Soker, A. Atala, and R. E. Guldberg. Chondrogenic differentiation of amniotic fluid-derived stem cells. J. Mol. Histol. 38:405–413, 2007.PubMedCrossRefGoogle Scholar
  83. 83.
    Krampera, M., G. Pizzolo, G. Aprili, and M. Franchini. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683, 2006.PubMedCrossRefGoogle Scholar
  84. 84.
    Kubo, S., G. M. Cooper, T. Matsumoto, J. A. Phillippi, K. A. Corsi, A. Usas, G. Li, F. H. Fu, and J. Huard. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 60:155–165, 2009.PubMedCrossRefGoogle Scholar
  85. 85.
    Kuroda, R., A. Usas, S. Kubo, K. Corsi, H. R. Peng, T. Rose, J. Cummins, F. H. Fu, and J. Huard. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 54:433–442, 2006.PubMedCrossRefGoogle Scholar
  86. 86.
    La Rocca, G., R. Anzalone, S. Corrao, F. Magno, T. Loria, M. Lo Iacono, A. Di Stefano, P. Giannuzzi, L. Marasa, F. Cappello, G. Zummo, and F. Farina. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem. Cell Biol. 131:267–282, 2009.PubMedCrossRefGoogle Scholar
  87. 87.
    Lee, J. S., and G. I. Im. Influence of chondrocytes on the chondrogenic differentiation of adipose stem cells. Tissue Eng. Part A 16:3569–3577, 2010.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee, S., J. H. Kim, C. H. Jo, S. C. Seong, J. C. Lee, and M. C. Lee. Effect of serum and growth factors on chondrogenic differentiation of synovium-derived stromal cells. Tissue Eng. Part A 15:3401–3415, 2009.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee, O. K., T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675, 2004.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee, H. J., C. Yu, T. Chansakul, S. Varghese, N. S. Hwang, and J. H. Elisseeff. Enhanced chondrogenic differentiation of embryonic stem cells by coculture with hepatic cells. Stem Cells Dev. 17:555–563, 2008.PubMedCrossRefGoogle Scholar
  91. 91.
    Li, Q., J. Tang, R. Wang, C. Bei, L. Xin, Y. Zeng, and X. Tang. Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif. Cells Blood Substit. Immobil. Biotechnol. 39:31–38, 2011.PubMedCrossRefGoogle Scholar
  92. 92.
    Li, J. J., Q. Zhao, E. B. Wang, C. H. Zhang, G. B. Wang, and Q. Yuan. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. J. Cell. Physiol. 227:2003–2012, 2012.PubMedCrossRefGoogle Scholar
  93. 93.
    Lu, S. H., A. H. Yang, C. F. Wei, H. S. Chiang, and M. B. Chancellor. Multi-potent differentiation of human purified muscle-derived cells: potential for tissue regeneration. BJU Int. 105:1174–1180, 2010.PubMedCrossRefGoogle Scholar
  94. 94.
    Lund, T. C., J. Tolar, and P. J. Orchard. Granulocyte colony-stimulating factor mobilized CFU-F can be found in the peripheral blood but have limited expansion potential. Haematologica 93:908–912, 2008.PubMedCrossRefGoogle Scholar
  95. 95.
    Mahmoudifar, N., and P. M. Doran. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867, 2010.PubMedCrossRefGoogle Scholar
  96. 96.
    Maloney, J. M., D. Nikova, F. Lautenschlager, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99:2479–2487, 2010.PubMedCrossRefGoogle Scholar
  97. 97.
    Marsano, A., S. J. Millward-Sadler, D. M. Salter, A. Adesida, T. Hardingham, E. Tognana, E. Kon, C. Chiari-Grisar, S. Nehrer, M. Jakob, and I. Martin. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage 15:48–58, 2007.PubMedCrossRefGoogle Scholar
  98. 98.
    Matsumoto, T., S. Kubo, L. B. Meszaros, K. A. Corsi, G. M. Cooper, G. Li, A. Usas, A. Osawa, F. H. Fu, and J. Huard. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 58:3809–3819, 2008.PubMedCrossRefGoogle Scholar
  99. 99.
    McElreavey, K. D., A. I. Irvine, K. T. Ennis, and W. H. McLean. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem. Soc. Trans. 19:29S, 1991.PubMedGoogle Scholar
  100. 100.
    McGuckin, C. P., N. Forraz, M. O. Baradez, S. Navran, J. Zhao, R. Urban, R. Tilton, and L. Denner. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 38:245–255, 2005.PubMedCrossRefGoogle Scholar
  101. 101.
    Mehlhorn, A. T., J. Zwingmann, G. Finkenzeller, P. Niemeyer, M. Dauner, B. Stark, N. P. Sudkamp, and H. Schmal. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng. Part A 15:1159–1167, 2009.PubMedCrossRefGoogle Scholar
  102. 102.
    Meng, J., C. F. Adkin, V. Arechavala-Gomeza, L. Boldrin, F. Muntoni, and J. E. Morgan. The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul. Disord. 20:6–15, 2010.PubMedCrossRefGoogle Scholar
  103. 103.
    Meng, J., C. F. Adkin, S. W. Xu, F. Muntoni, and J. E. Morgan. Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS ONE 6:e17454, 2011.PubMedCrossRefGoogle Scholar
  104. 104.
    Miyamoto, C., T. Matsumoto, K. Sakimura, and H. Shindo. Osteogenic protein-1 with transforming growth factor-beta1: potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro. J. Orthop. Sci. 12:555–561, 2007.PubMedCrossRefGoogle Scholar
  105. 105.
    Mosna, F., L. Sensebe, and M. Krampera. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 19:1449–1470, 2010.PubMedCrossRefGoogle Scholar
  106. 106.
    Nadri, S., M. Soleimani, R. H. Hosseni, M. Massumi, A. Atashi, and R. Izadpanah. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51:723–729, 2007.PubMedCrossRefGoogle Scholar
  107. 107.
    Nakagawa, T., S. Y. Lee, and A. H. Reddi. Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta 1. Arthritis Rheum. 60:3686–3692, 2009.PubMedCrossRefGoogle Scholar
  108. 108.
    Nam, J., J. Johnson, J. J. Lannutti, and S. Agarwal. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater. 7:1516–1524, 2011.PubMedCrossRefGoogle Scholar
  109. 109.
    Nawata, M., S. Wakitani, H. Nakaya, A. Tanigami, T. Seki, Y. Nakamura, N. Saito, K. Sano, E. Hidaka, and K. Takaoka. Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum. 52:155–163, 2005.PubMedCrossRefGoogle Scholar
  110. 110.
    Nesic, D., R. Whiteside, M. Brittberg, D. Wendt, I. Martin, and P. Mainil-Varlet. Cartilage tissue engineering for degenerative joint disease. Adv. Drug Deliv. Rev. 58:300–322, 2006.PubMedCrossRefGoogle Scholar
  111. 111.
    Ng, K. K., H. S. Thatte, and M. Spector. Chondrogenic differentiation of adult mesenchymal stem cells and embryonic cells in collagen scaffolds. J. Biomed. Mater. Res. A 99A:275–282, 2011.CrossRefGoogle Scholar
  112. 112.
    Pappa, K. I., and N. Anagnou. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen. Med. 4:423–433, 2009.PubMedCrossRefGoogle Scholar
  113. 113.
    Park, K., K. J. Cho, J. J. Kim, I. H. Kim, and D. K. Han. Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells. Macromol. Biosci. 9:221–229, 2009.PubMedCrossRefGoogle Scholar
  114. 114.
    Park, J. S., M. S. Shim, S. H. Shim, H. N. Yang, S. Y. Jeon, D. G. Woo, D. R. Lee, T. K. Yoon, and K. H. Park. Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated in fibrin gels containing TGF-beta 3. Biomaterials 32:8139–8149, 2011.PubMedCrossRefGoogle Scholar
  115. 115.
    Park, J. S., H. N. Yang, D. G. Woo, H. M. Chung, and K. H. Park. In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng. Part A 15:2163–2175, 2009.PubMedCrossRefGoogle Scholar
  116. 116.
    Park, J. S., H. N. Yang, D. G. Woo, S. Y. Jeon, and K. H. Park. The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres. Biomaterials 32:28–38, 2011.PubMedCrossRefGoogle Scholar
  117. 117.
    Pate, D. W., S. S. Southerland, D. A. Grande, H. E. Young, and P. A. Lucas. Isolation and differentiation of mesenchymal stem-cells from rabbit muscle. Clin. Res. 41:A347–A347, 1993.Google Scholar
  118. 118.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.PubMedCrossRefGoogle Scholar
  119. 119.
    Puetzer, J. L., J. N. Petitte, and E. G. Loboa. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng. Part B 16:435–444, 2010.CrossRefGoogle Scholar
  120. 120.
    Qi, J., A. Chen, H. You, K. Li, D. Zhang, and F. Guo. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomed. Mater. 6:015006, 2011.PubMedCrossRefGoogle Scholar
  121. 121.
    Qi, Y. Y., T. F. Zhao, K. Xu, T. Y. Dai, and W. Q. Yan. The restoration of full-thickness cartilage defects with mesenchymal stem cells (MSCs) loaded and cross-linked bilayer collagen scaffolds on rabbit model. Mol. Biol. Rep. 39:1231–1237, 2012.PubMedCrossRefGoogle Scholar
  122. 122.
    Rada, T., R. L. Reis, and A. E. Gomes. Novel method for the isolation of adipose stem cells (ASCs). J. Tissue Eng. Regen. Med. 3:158–159, 2009.PubMedCrossRefGoogle Scholar
  123. 123.
    Raghunath, J., J. Sutherland, V. Salih, N. Mordan, P. E. Butler, and A. M. Seifalian. Chondrogenic potential of blood-acquired mesenchymal progenitor cells. J. Plast. Reconstr. Aesthet. Surg. 63:841–847, 2010.PubMedCrossRefGoogle Scholar
  124. 124.
    Rebelatto, C. K., A. M. Aguiar, M. P. Moretao, A. C. Senegaglia, P. Hansen, F. Barchiki, J. Oliveira, J. Martins, C. Kuligovski, F. Mansur, A. Christofis, V. F. Amaral, P. S. Brofman, S. Goldenberg, L. S. Nakao, and A. Correa. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. (Maywood) 233:901–913, 2008.CrossRefGoogle Scholar
  125. 125.
    Richards, M., C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20:933–936, 2002.PubMedCrossRefGoogle Scholar
  126. 126.
    Riekstina, U., I. Cakstina, V. Parfejevs, M. Hoogduijn, G. Jankovskis, I. Muiznieks, R. Muceniece, and J. Ancans. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 5:378–386, 2009.PubMedCrossRefGoogle Scholar
  127. 127.
    Roufosse, C. A., N. C. Direkze, W. R. Otto, and N. A. Wright. Circulating mesenchymal stem cells. Int. J. Biochem. Cell Biol. 36:585–597, 2004.PubMedCrossRefGoogle Scholar
  128. 128.
    Sakaguchi, Y., I. Sekiya, K. Yagishita, and T. Muneta. Comparison of human stem cells derived from various mesenchymal tissues—superiority of synovium as a cell source. Arthritis Rheum. 52:2521–2529, 2005.PubMedCrossRefGoogle Scholar
  129. 129.
    Sanchez-Adams, J., and K. A. Athanasiou. Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials 33:109–119, 2012.PubMedCrossRefGoogle Scholar
  130. 130.
    Saw, K. Y., A. Anz, S. Merican, Y. G. Tay, K. Ragavanaidu, C. S. Y. Jee, and D. A. McGuire. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy 27:493–506, 2011.PubMedCrossRefGoogle Scholar
  131. 131.
    Seda Tigli, R., S. Ghosh, M. M. Laha, N. K. Shevde, L. Daheron, J. Gimble, M. Gumusderelioglu, and D. L. Kaplan. Comparative chondrogenesis of human cell sources in 3D scaffolds. J. Tissue Eng. Regen. Med. 3:348–360, 2009.PubMedCrossRefGoogle Scholar
  132. 132.
    Sekiya, I., D. C. Colter, and D. J. Prockop. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem. Biophys. Res. Commun. 284:411–418, 2001.PubMedCrossRefGoogle Scholar
  133. 133.
    Sekiya, I., B. L. Larson, J. T. Vuoristo, R. L. Reger, and D. J. Prockop. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res. 320:269–276, 2005.PubMedCrossRefGoogle Scholar
  134. 134.
    Semenov, O. V., S. Koestenbauer, M. Riegel, N. Zech, R. Zimmermann, A. H. Zisch, and A. Malek. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am. J. Obstet. Gynecol. 202:193.e1–193.e13, 2010.CrossRefGoogle Scholar
  135. 135.
    Shen, B., A. Wei, H. Tao, A. D. Diwan, and D. D. Ma. BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng. Part A 15:1311–1320, 2009.PubMedCrossRefGoogle Scholar
  136. 136.
    Shimaya, M., T. Muneta, S. Ichinose, K. Tsuji, and I. Sekiya. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthritis Cartilage 18:1300–1309, 2010.PubMedCrossRefGoogle Scholar
  137. 137.
    Shirasawa, S., I. Sekiya, Y. Sakaguchi, K. Yagishita, S. Ichinose, and T. Muneta. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J. Cell. Biochem. 97:84–97, 2006.PubMedCrossRefGoogle Scholar
  138. 138.
    Solchaga, L. A., K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng. Part A 16:1009–1019, 2010.PubMedCrossRefGoogle Scholar
  139. 139.
    Strom, S., F. Holm, R. Bergstrom, A. M. Stromberg, and O. Hovatta. Derivation of 30 human embryonic stem cell lines—improving the quality. In Vitro Cell. Dev. Biol. Anim. 46:337–344, 2010.PubMedCrossRefGoogle Scholar
  140. 140.
    Strom, S., J. Inzunza, K. H. Grinnemo, K. Hohmnberg, E. Matilainen, A. M. Stromberg, E. Blennow, and O. Hovatta. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum. Reprod. 22:3051–3058, 2007.PubMedCrossRefGoogle Scholar
  141. 141.
    Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872, 2007.PubMedCrossRefGoogle Scholar
  142. 142.
    Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.PubMedCrossRefGoogle Scholar
  143. 143.
    Teramura, T., Y. Onodera, T. Mihara, Y. Hosoi, C. Hamanishi, and K. Fukuda. Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell. Reprogram. 12:249–261, 2010.PubMedCrossRefGoogle Scholar
  144. 144.
    Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147, 1998.PubMedCrossRefGoogle Scholar
  145. 145.
    Tigli, R. S., C. Cannizaro, M. Gumusderelioglu, and D. L. Kaplan. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs. J. Biomed. Mater. Res. A 96:21–28, 2011.PubMedGoogle Scholar
  146. 146.
    Titushkin, I., and M. Cho. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 93:3693–3702, 2007.PubMedCrossRefGoogle Scholar
  147. 147.
    Tobita, M., H. Orbay, and H. Mizuno. Adipose-derived stem cells: current findings and future perspectives. Discov. Med. 11:160–170, 2011.PubMedGoogle Scholar
  148. 148.
    Toh, W. S., E. H. Lee, and T. Cao. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev. 7:544–559, 2011.PubMedCrossRefGoogle Scholar
  149. 149.
    Toh, W. S., E. H. Lee, X. M. Guo, J. K. Y. Chan, C. H. Yeow, A. B. Choo, and T. Cao. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980, 2010.PubMedCrossRefGoogle Scholar
  150. 150.
    Toh, W. S., Z. Yang, H. Liu, B. C. Heng, E. H. Lee, and T. Cao. Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25:950–960, 2007.PubMedCrossRefGoogle Scholar
  151. 151.
    Tondreau, T., N. Meuleman, A. Delforge, M. Dejeneffe, R. Leroy, M. Massy, C. Mortier, D. Bron, and L. Lagneaux. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112, 2005.PubMedCrossRefGoogle Scholar
  152. 152.
    Tsai, M. S., S. M. Hwang, K. D. Chen, Y. S. Lee, L. W. Hsu, Y. J. Chang, C. N. Wang, H. H. Peng, Y. L. Chang, A. S. Chao, S. D. Chang, K. D. Lee, T. H. Wang, H. S. Wang, and Y. K. Soong. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 25:2511–2523, 2007.PubMedCrossRefGoogle Scholar
  153. 153.
    Tsai, M. S., J. L. Lee, Y. J. Chang, and S. M. Hwang. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19:1450–1456, 2004.PubMedCrossRefGoogle Scholar
  154. 154.
    Valonen, P. K., F. T. Moutos, A. Kusanagi, M. G. Moretti, B. O. Diekman, J. F. Welter, A. I. Caplan, F. Guilak, and L. E. Freed. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 31:2193–2200, 2010.PubMedCrossRefGoogle Scholar
  155. 155.
    Vater, C., P. Kasten, and M. Stiehler. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7:463–477, 2011.PubMedCrossRefGoogle Scholar
  156. 156.
    Wagner, W., F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, W. Ansorge, and A. D. Ho. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33:1402–1416, 2005.PubMedCrossRefGoogle Scholar
  157. 157.
    Wang, H. S., S. C. Hung, S. T. Peng, C. C. Huang, H. M. Wei, Y. J. Guo, Y. S. Fu, M. C. Lai, and C. C. Chen. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337, 2004.PubMedCrossRefGoogle Scholar
  158. 158.
    Wang, L., K. Seshareddy, M. L. Weiss, and M. S. Detamore. Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng. Part A 15:1009–1017, 2009.PubMedCrossRefGoogle Scholar
  159. 159.
    Wang, L., I. Tran, K. Seshareddy, M. L. Weiss, and M. S. Detamore. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng. Part A 15:2259–2266, 2009.PubMedCrossRefGoogle Scholar
  160. 160.
    Wei, Y., W. Zeng, R. Wan, J. Wang, Q. Zhou, S. Qiu, and S. R. Singh. Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur. Cell. Mater. 23:1–12, 2012.PubMedGoogle Scholar
  161. 161.
    Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. Campbell. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813, 1997.PubMedCrossRefGoogle Scholar
  162. 162.
    Witkowska-Zimny, M., and E. Wrobel. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell. Mol. Biol. Lett. 16:493–514, 2011.PubMedCrossRefGoogle Scholar
  163. 163.
    Wu, X., S. Wang, B. Chen, and X. An. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 340:549–567, 2010.PubMedCrossRefGoogle Scholar
  164. 164.
    Yang, Z., L. Sui, W. S. Toh, E. H. Lee, and T. Cao. Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 18:929–940, 2009.PubMedCrossRefGoogle Scholar
  165. 165.
    Yang, Z., Y. Wu, C. Li, T. Zhang, Y. Zou, J. H. Hui, Z. Ge, and E. H. Lee. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(l-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng. Part A 18:242–251, 2012.PubMedCrossRefGoogle Scholar
  166. 166.
    Ye, Z. Q., J. K. Burkholder, P. Qiu, J. C. Schultz, N. T. Shahidi, and N. S. Yang. Establishment of an adherent cell feeder layer from human umbilical cord blood for support of long-term hematopoietic progenitor cell growth. Proc. Natl Acad. Sci. U.S.A. 91:12140–12144, 1994.PubMedCrossRefGoogle Scholar
  167. 167.
    Ye, C., J. Li, Z. He, X. Nin, Y. Zhang, X. Shang, R. Liu, and Y. Duan. Multilineage differentiation of muscle-derived stem cells from GFP transgenic mice. Biotechnol. Lett. 32:1745–1752, 2010.PubMedCrossRefGoogle Scholar
  168. 168.
    Yoon, I. S., W. Chung, J. H. Sung, H. J. Cho, J. S. Kim, W. S. Shim, C. K. Shim, S. J. Chung, and D. D. Kim. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. J. Biosci. Bioeng. 112:402–408, 2011.PubMedCrossRefGoogle Scholar
  169. 169.
    Yoshimura, K., T. Shigeura, D. Matsumoto, T. Sato, Y. Takaki, E. Aiba-Kojima, K. Sato, K. Inoue, T. Nagase, I. Koshima, and K. Gonda. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell. Physiol. 208:64–76, 2006.PubMedCrossRefGoogle Scholar
  170. 170.
    You, M., G. Peng, J. Li, P. Ma, Z. Wang, W. Shu, S. Peng, and G. Q. Chen. Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32:2305–2313, 2011.PubMedCrossRefGoogle Scholar
  171. 171.
    Young, H. E., T. A. Steele, R. A. Bray, K. Detmer, L. W. Blake, P. W. Lucas, and A. C. Black, Jr. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC class-I. Proc. Soc. Exp. Biol. Med. 221:63–71, 1999.PubMedCrossRefGoogle Scholar
  172. 172.
    Yu, H. Y., C. Y. Tay, W. S. Leong, S. C. W. Tan, K. Liao, and L. P. Tan. Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation. Biochem. Biophys. Res. Commun. 393:150–155, 2010.PubMedCrossRefGoogle Scholar
  173. 173.
    Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang, X., M. Hirai, S. Cantero, R. Ciubotariu, L. Dobrila, A. Hirsh, K. Igura, H. Satoh, I. Yokomi, T. Nishimura, S. Yamaguchi, K. Yoshimura, P. Rubinstein, and T. A. Takahashi. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J. Cell. Biochem. 112:1206–1218, 2011.PubMedCrossRefGoogle Scholar
  175. 175.
    Zhang, X. H., T. Nakaoka, T. Nishishita, N. Watanabe, K. Igura, K. I. Shinomiya, T. A. Takahashi, and N. Yamashita. Efficient adeno-associated virus-mediated gene expression in human placenta-derived mesenchymal cells. Microbiol. Immunol. 47:109–116, 2003.PubMedGoogle Scholar
  176. 176.
    Zhou, J., C. Xu, G. Wu, X. Cao, L. Zhang, Z. Zhai, Z. Zheng, X. Chen, and Y. Wang. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater. 7:3999–4006, 2011.PubMedCrossRefGoogle Scholar
  177. 177.
    Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13:4279–4295, 2002.PubMedCrossRefGoogle Scholar
  178. 178.
    Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228, 2001.PubMedCrossRefGoogle Scholar
  179. 179.
    Zvaifler, N. J., L. Marinova-Mutafchieva, G. Adams, C. J. Edwards, J. Moss, J. A. Burger, and R. N. Maini. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2:477–488, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  1. 1.Center for Biomedical EngineeringBrown UniversityProvidenceUSA
  2. 2.Department of Molecular Pharmacology, Physiology and BiotechnologyBrown UniversityProvidenceUSA
  3. 3.Department of OrthopaedicsBrown UniversityProvidenceUSA
  4. 4.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations