Annals of Biomedical Engineering

, Volume 41, Issue 1, pp 68–77 | Cite as

Cationic Nanoparticles Have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model

Article

Abstract

Despite their great promise, only a few nanoparticle formulations have been approved for clinical use in oncology. The failure of nano-scale drugs to enhance cancer therapy is in large part due to inefficient delivery. To overcome this outstanding problem, a better understanding of how the physical properties (i.e., size, surface chemistry, and shape) of nanoparticles affect their transvascular transport in tumors is required. In this study, we developed a mathematical model for nanoparticle delivery to solid tumors taking into account electrostatic interactions between the particles and the negatively-charged pores of the vessel wall. The model predictions suggest that electrostatic repulsion has a minor effect on the transvascular transport of nanoparticles. On the contrary, electrostatic attraction, caused even by small cationic charges (surface charge density less than 3 × 10−3 C/m2) can lead to a twofold or more increase in the transvascular flux of nanoparticles into the tumor interstitial space. Importantly, for every nanoparticle size, there is a value of charge density above which a steep increase in transvascular transport is predicted. Our model provides important guidelines for the optimal design of nanoparticle formulation for delivery to solid tumors.

Keywords

Vascular permeability Electrostatic and hydrodynamic interactions Surface charge density Nanomedicine Cancer therapy 

Notes

Acknowledgments

The authors thank Dr. Vikash Chauhan for his insightful comments on the manuscript. This work was supported by a Marie-Curie International Reintegration Grant (No. PIRG08-GA-2010-276894), the National Cancer Institute (P01-CA080124, R01-CA126642, R01-CA115767, R01-CA096915, R01-CA085140, R01-CA098706, T32-CA073479, Federal Share Proton Beam Program Income Grant), and a DoD Breast Cancer Research Innovator award (W81XWH-10-1-0016).

Conflict of Interest

R.K.J. received research grants from Dyax, MedImmune and Roche; consultant fees from Dyax, Enlight, Noxxon and SynDevRx; owns equity in Enlight, SynDevRx and XTuit, serves on the Board of Directors of XTuit and Board of Trustees of H&Q Capital Management. No reagents or funding from these companies was used in these studies. Therefore, there is no significant financial or other competing interest in the work. The other authors declare no competing financial interests.

Supplementary material

10439_2012_630_MOESM1_ESM.pdf (287 kb)
Supplementary material 1 (PDF 287 kb)

References

  1. 1.
    Baish, J. W., P. A. Netti, and R. K. Jain. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53:128–141, 1997.PubMedCrossRefGoogle Scholar
  2. 2.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 40:246–263, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Boucher, Y., and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52:5110–5114, 1992.PubMedGoogle Scholar
  4. 4.
    Bungay, P. M., and H. Brenner. The motion of a closely fitting sphere in a fluid-filled tube. Int. J. Multiph. Flow 1:25–56, 1973.CrossRefGoogle Scholar
  5. 5.
    Campbell, R. B., D. Fukumura, E. B. Brown, L. M. Mazzola, Y. Izumi, R. K. Jain, V. P. Torchilin, and L. L. Munn. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62:6831–6836, 2002.PubMedGoogle Scholar
  6. 6.
    Chauhan, V. P., Z. Popovic, O. Chen, J. Cui, D. Fukumura, M. G. Bawendi, and R. K. Jain. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl. 50:11417–11420, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Chauhan, V. P., T. Stylianopoulos, Y. Boucher, and R. K. Jain. Delivery of molecular and nanomedicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2:281–298, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Chauhan, V. P., T. Stylianopoulos, J. D. Martin, Z. Popovic, O. Chen, W. S. Kamoun, M. G. Bawendi, D. Fukumura, and R. K. Jain. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7:383–388, 2012.PubMedCrossRefGoogle Scholar
  9. 9.
    Clauss, M. A., and R. K. Jain. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res. 50:3487–3492, 1990.PubMedGoogle Scholar
  10. 10.
    Decuzzi, P., and M. Ferrari. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29:377–384, 2008.PubMedCrossRefGoogle Scholar
  11. 11.
    Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33:1409–1425, 1987.CrossRefGoogle Scholar
  12. 12.
    Dellian, M., F. Yuan, V. S. Trubetskoy, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer 82:1513–1518, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Diop-Frimpong, B., V. P. Chauhan, S. Krane, Y. Boucher, and R. K. Jain. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 108:2909–2914, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerlowski, L. E., and R. K. Jain. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31:288–305, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Hashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156:1363–1380, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Hobbs, S. K., W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95:4607–4612, 1998.PubMedCrossRefGoogle Scholar
  17. 17.
    Hood, J. D., M. Bednarski, R. Frausto, S. Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6:559–593, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48:2641–2658, 1988.PubMedGoogle Scholar
  20. 20.
    Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–989, 2001.PubMedCrossRefGoogle Scholar
  21. 21.
    Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62, 2005.PubMedCrossRefGoogle Scholar
  22. 22.
    Jain, R. K., and T. Stylianopoulos. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7:653–664, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Longmire, M., P. L. Choyke, and H. Kobayashi. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3:703–717, 2008.CrossRefGoogle Scholar
  24. 24.
    McDougall, S. R., A. R. Anderson, and M. A. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241:564–589, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503, 2000.PubMedGoogle Scholar
  26. 26.
    Nugent, L. J., and R. K. Jain. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44:238–244, 1984.PubMedGoogle Scholar
  27. 27.
    Park, S., and K. Hamad-Schifferli. Evaluation of hydrodynamic size and zeta-potential of surface-modified Au nanoparticle-DNA conjugates via Ferguson analysis. J. Phys. Chem. 112:7611–7676, 2008.Google Scholar
  28. 28.
    Pluen, A., Y. Boucher, S. Ramanujan, T. D. McKee, T. Gohongi, E. di Tomaso, E. B. Brown, Y. Izumi, R. B. Campbell, D. A. Berk, and R. K. Jain. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. USA 98:4628–4633, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Popovic, Z., W. Liu, V. P. Chauhan, J. Lee, C. Wong, A. B. Greytak, N. Insin, D. G. Nocera, D. Fukumura, R. K. Jain, and M. G. Bawendi. A nanoparticle size series for in vivo fluorescence imaging. Angew. Chem. Int. Ed. Engl. 49:8649–8652, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Ruoslahti, E., S. N. Bhatia, and M. J. Sailor. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188:759–768, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Sarin, H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes Res. 2:14, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmitt-Sody, M., S. Strieth, S. Krasnici, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks, and M. Dellian. Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin. Cancer Res. 9:2335–2341, 2003.PubMedGoogle Scholar
  33. 33.
    Sevick, E. M., and R. K. Jain. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res. 49:3513–3519, 1989.PubMedGoogle Scholar
  34. 34.
    Smith, F. G., and W. M. Deen. Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores. J. Colloid Interface Sci. 91:571–590, 1983.CrossRefGoogle Scholar
  35. 35.
    Stohrer, M., Y. Boucher, M. Stangassinger, and R. K. Jain. Oncotic pressure in solid tumors is elevated. Cancer Res. 60:4251–4255, 2000.PubMedGoogle Scholar
  36. 36.
    Stylianopoulos, T., M. Z. Poh, N. Insin, M. G. Bawendi, D. Fukumura, L. L. Munn, and R. K. Jain. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99:1342–1349, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Stylianopoulos, T., A. Yeckel, J. J. Derby, X. J. Luo, M. S. Shephard, E. A. Sander, and V. H. Barocas. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Phys Fluids (1994) 20:123601, 2008.Google Scholar
  38. 38.
    Sugahara, K. N., T. Teesalu, P. P. Karmali, V. R. Kotamraju, L. Agemy, O. M. Girard, D. Hanahan, R. F. Mattrey, and E. Ruoslahti. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520, 2009.PubMedCrossRefGoogle Scholar
  39. 39.
    Tong, R. T., Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64:3731–3736, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9:E128–E147, 2007.PubMedCrossRefGoogle Scholar
  41. 41.
    Wong, C., T. Stylianopoulos, J. Cui, J. Martin, V. P. Chauhan, W. Jiang, Z. Popovic, R. K. Jain, M. G. Bawendi, and D. Fukumura. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 108:2426–2431, 2011.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, J., S. Xu, Q. Long, M. W. Collins, C. S. Konig, G. Zhao, Y. Jiang, and A. R. Padhani. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J. Biomech. 41:996–1004, 2008.PubMedCrossRefGoogle Scholar
  43. 43.
    Yuan, F., M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55:3752–3756, 1995.PubMedGoogle Scholar
  44. 44.
    Yuan, F., M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352–3356, 1994.PubMedGoogle Scholar
  45. 45.
    Yuan, F., H. A. Salehi, Y. Boucher, U. S. Vasthare, R. F. Tuma, and R. K. Jain. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54:4564–4568, 1994.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus
  2. 2.Edwin L. Steele Laboratory for Tumor BiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations