Annals of Biomedical Engineering

, Volume 41, Issue 1, pp 123–130 | Cite as

The Effects of a Valgus Collapse Knee Position on In Vivo ACL Elongation

  • G. M. Utturkar
  • L. A. Irribarra
  • K. A. Taylor
  • C. E. Spritzer
  • D. C. Taylor
  • W. E. Garrett
  • Louis E. DeFrateEmail author


There are conflicting data regarding what motions increase ACL injury risk. More specifically, the mechanical role of valgus collapse positions during ACL injury remains controversial. Our objective was to evaluate ACL elongation in a model that mimics knee movements thought to occur during ACL injury. Eight healthy male subjects were imaged using MR and biplanar fluoroscopy to measure the in vivo elongation of the ACL and its functional bundles during three static knee positions: full extension, 30° of flexion, and a position intended to mimic a valgus collapse position described in the literature. For this study, the valgus collapse position consisted of 30° of knee flexion, internal rotation of the hip, and 10° of external tibial rotation. ACL length decreased significantly from full extension (30.2 ± 2.6 mm) to 30° of flexion (27.1 ± 2.2 mm). ACL length further decreased in the valgus collapse position (25.6 ± 2.4 mm). Both functional bundles of the ACL followed similar trends with regards to decreases in length in each of the three positions. Since strain would follow patterns of ACL length, landing on an extended knee may be a more relevant risk factor for ACL injuries than the valgus collapse position in males. Future studies should evaluate the effects of dynamic motion patterns on in vivo ACL strains.


Anterior cruciate ligament (ACL) Magnetic resonance imaging (MRI) Fluoroscopy Injury mechanisms Valgus collapse Dynamic valgus 



This work was supported by the National Institutes of Health (Grant no. R03AR055659) and a grant from the National Football League Charities.


  1. 1.
    Abebe, E. S., J. P. Kim, G. M. Utturkar, et al. The effect of femoral tunnel placement on ACL graft orientation and length during in vivo knee flexion. J. Biomech. 44(10):1914–1920, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Abebe, E. S., C. T. Moorman, 3rd, T. S. Dziedzic, et al. Femoral tunnel placement during anterior cruciate ligament reconstruction: an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel-independent techniques. Am. J. Sports Med. 37(10):1904–1911, 2009.PubMedCrossRefGoogle Scholar
  3. 3.
    Agel, J., E. A. Arendt, and B. Bershadsky. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am. J. Sports Med. 33(4):524–530, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Andriacchi, T. P., A. Mundermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32(3):447–457, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Arms, S. W., M. H. Pope, R. J. Johnson, R. A. Fischer, I. Arvidsson, and E. Eriksson. The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am. J. Sports Med. 12(1):8–18, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Barber-Westin, S. D., F. R. Noyes, S. T. Smith, and T. M. Campbell. Reducing the risk of noncontact anterior cruciate ligament injuries in the female athlete. Phys. Sportsmed. 37(3):49–61, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    Berns, G. S., M. L. Hull, and H. A. Patterson. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 10(2):167–176, 1992.PubMedCrossRefGoogle Scholar
  8. 8.
    Beynnon, B. D., B. C. Fleming, R. J. Johnson, C. E. Nichols, P. A. Renstrom, and M. H. Pope. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am. J. Sports Med. 23(1):24–34, 1995.PubMedCrossRefGoogle Scholar
  9. 9.
    Beynnon, B. D., R. J. Johnson, B. C. Fleming, C. J. Stankewich, P. A. Renstrom, and C. E. Nichols. The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am. J. Sports Med. 25(6):823–829, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Boden, B. P., G. S. Dean, J. A. Feagin, Jr., and W. E. Garrett, Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578, 2000.PubMedGoogle Scholar
  11. 11.
    Boden, B. P., J. S. Torg, S. B. Knowles, and T. E. Hewett. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am. J. Sports Med. 37(2):252–259, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Caputo, A. M., J. Y. Lee, C. E. Spritzer, et al. In vivo kinematics of the tibiotalar joint after lateral ankle instability. Am. J. Sports Med. 37(11):2241–2248, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Cochrane, J. L., D. G. Lloyd, A. Buttfield, H. Seward, and J. McGivern. Characteristics of anterior cruciate ligament injuries in Australian football. J. Sci. Med. Sport 10(2):96–104, 2007.PubMedCrossRefGoogle Scholar
  14. 14.
    DeFrate, L. E., K. W. Nha, R. Papannagari, J. M. Moses, T. J. Gill, and G. Li. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion. J. Biomech. 40(8):1716–1722, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    DeFrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34(8):1240–1246, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Delfico, A. J., and W. E. Garrett, Jr. Mechanisms of injury of the anterior cruciate ligament in soccer players. Clin. Sports Med. 17(4):779–785, vii, 1998.Google Scholar
  17. 17.
    DeMorat, G., P. Weinhold, T. Blackburn, S. Chudik, and W. Garrett. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am. J. Sports Med. 32(2):477–483, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Deneweth, J. M., M. J. Bey, S. G. McLean, T. R. Lock, P. A. Kolowich, and S. Tashman. Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Am. J. Sports Med. 38(9):1820–1828, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Fernandez, J. W., M. Akbarshahi, K. M. Crossley, K. B. Shelburne, and M. G. Pandy. Model predictions of increased knee joint loading in regions of thinner articular cartilage after patellar tendon adhesion. J. Orthop. Res. 29(8):1168–1177, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Fithian, D. C., E. W. Paxton, M. L. Stone, et al. Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am. J. Sports Med. 33(3):335–346, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Fleming, B. C., B. D. Beynnon, P. A. Renstrom, G. D. Peura, C. E. Nichols, and R. J. Johnson. The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am. J. Sports Med. 26(1):109–118, 1998.PubMedGoogle Scholar
  22. 22.
    Fleming, B. C., H. L. Oksendahl, W. A. Mehan, et al. Delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) following ACL injury. Osteoarthr. Cartil. 18(5):662–667, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Fleming, B. C., P. A. Renstrom, B. D. Beynnon, et al. The effect of weightbearing and external loading on anterior cruciate ligament strain. J. Biomech. 34(2):163–170, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Gianotti, S. M., S. W. Marshall, P. A. Hume, and L. Bunt. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J. Sci. Med. Sport 12(6):622–627, 2009.PubMedCrossRefGoogle Scholar
  25. 25.
    Gilchrist, J., B. R. Mandelbaum, H. Melancon, et al. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am. J. Sports Med. 36(8):1476–1483, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Griffin, L. Y., M. J. Albohm, E. A. Arendt, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am. J. Sports Med. 34(9):1512–1532, 2006.PubMedCrossRefGoogle Scholar
  27. 27.
    Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105(2):136–144, 1983.PubMedCrossRefGoogle Scholar
  28. 28.
    Harner, C. D., G. H. Baek, T. M. Vogrin, G. J. Carlin, S. Kashiwaguchi, and S. L. Woo. Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749, 1999.PubMedCrossRefGoogle Scholar
  29. 29.
    Hewett, T. E., T. N. Lindenfeld, J. V. Riccobene, and F. R. Noyes. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am. J. Sports Med. 27(6):699–706, 1999.PubMedGoogle Scholar
  30. 30.
    Hewett, T. E., G. D. Myer, and K. R. Ford. Decrease in neuromuscular control about the knee with maturation in female athletes. J. Bone Joint Surg. Am. 86-A(8):1601–1608, 2004.PubMedGoogle Scholar
  31. 31.
    Hewett, T. E., G. D. Myer, K. R. Ford, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33(4):492–501, 2005.PubMedCrossRefGoogle Scholar
  32. 32.
    Hirokawa, S., M. Solomonow, Y. Lu, Z. P. Lou, and R. D’Ambrosia. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am. J. Sports Med. 20(3):299–306, 1992.PubMedCrossRefGoogle Scholar
  33. 33.
    Jordan, S. S., L. E. DeFrate, K. W. Nha, R. Papannagari, T. J. Gill, and G. Li. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am. J. Sports Med. 35(4):547–554, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Koga, H., A. Nakamae, Y. Shima, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 38(11):2218–2225, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Krosshaug, T., and R. Bahr. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J. Biomech. 38(4):919–929, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Krosshaug, T., A. Nakamae, B. P. Boden, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am. J. Sports Med. 35(3):359–367, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, G., L. E. Defrate, H. E. Rubash, and T. J. Gill. In vivo kinematics of the ACL during weight-bearing knee flexion. J. Orthop. Res. 23(2):340–344, 2005.PubMedCrossRefGoogle Scholar
  38. 38.
    Li, G., L. E. DeFrate, H. Sun, and T. J. Gill. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am. J. Sports Med. 32(6):1415–1420, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Lohmander, L. S., P. M. Englund, L. L. Dahl, and E. M. Roos. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35(10):1756–1769, 2007.PubMedCrossRefGoogle Scholar
  40. 40.
    Malinzak, R. A., S. M. Colby, D. T. Kirkendall, B. Yu, and W. E. Garrett. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin. Biomech. (Bristol, Avon) 16(5):438–445, 2001.CrossRefGoogle Scholar
  41. 41.
    Mandelbaum, B. R., H. J. Silvers, D. S. Watanabe, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 33(7):1003–1010, 2005.PubMedCrossRefGoogle Scholar
  42. 42.
    Markolf, K. L., D. M. Burchfield, M. M. Shapiro, M. F. Shepard, G. A. Finerman, and J. L. Slauterbeck. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 13(6):930–935, 1995.PubMedCrossRefGoogle Scholar
  43. 43.
    Miranda, D. L., J. B. Schwartz, A. C. Loomis, E. L. Brainerd, B. C. Fleming, and J. J. Crisco. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J. Biomech. Eng. 133(12):121002, 2011.PubMedCrossRefGoogle Scholar
  44. 44.
    Myers, C. A., M. R. Torry, D. S. Peterson, et al. Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am. J. Sports Med. 39(8):1714–1722, 2011.PubMedCrossRefGoogle Scholar
  45. 45.
    Nunley, R. M., D. Wright, J. B. Renner, B. Yu, and W. E. Garrett. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res. Sports Med. 11:173–185, 2003.Google Scholar
  46. 46.
    Olsen, O. E., G. Myklebust, L. Engebretsen, and R. Bahr. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am. J. Sports Med. 32(4):1002–1012, 2004.PubMedCrossRefGoogle Scholar
  47. 47.
    Pfeiffer, R. P., K. G. Shea, D. Roberts, S. Grandstrand, and L. Bond. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J. Bone Joint Surg. Am. 88(8):1769–1774, 2006.PubMedCrossRefGoogle Scholar
  48. 48.
    Quatman, C. E., and T. E. Hewett. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br. J. Sports Med. 43(5):328–335, 2009.PubMedCrossRefGoogle Scholar
  49. 49.
    Salmon, L. J., V. J. Russell, K. Refshauge, et al. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am. J. Sports Med. 34(5):721–732, 2006.PubMedCrossRefGoogle Scholar
  50. 50.
    Scanlan, S. F., K. Blazek, A. M. Chaudhari, M. R. Safran, and T. P. Andriacchi. Graft orientation influences the knee flexion moment during walking in patients with anterior cruciate ligament reconstruction. Am. J. Sports Med. 37(11):2173–2178, 2009.PubMedCrossRefGoogle Scholar
  51. 51.
    Scanlan, S. F., A. M. Chaudhari, C. O. Dyrby, and T. P. Andriacchi. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J. Biomech. 43(9):1817–1822, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Schmitz, R. J., S. J. Shultz, and A. D. Nguyen. Dynamic valgus alignment and functional strength in males and females during maturation. J. Athl. Train. 44(1):26–32, 2009.PubMedCrossRefGoogle Scholar
  53. 53.
    Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J. Biomech. 42(3):280–285, 2009.PubMedCrossRefGoogle Scholar
  54. 54.
    Soderman, K., S. Werner, T. Pietila, B. Engstrom, and H. Alfredson. Balance board training: prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg. Sports Traumatol. Arthrosc. 8(6):356–363, 2000.PubMedCrossRefGoogle Scholar
  55. 55.
    Tashman, S., D. Collon, K. Anderson, P. Kolowich, and W. Anderst. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am. J. Sports Med. 32(4):975–983, 2004.PubMedCrossRefGoogle Scholar
  56. 56.
    Taylor, K. A., M. E. Terry, G. M. Utturkar, et al. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J. Biomech. 44(3):365–371, 2011.PubMedCrossRefGoogle Scholar
  57. 57.
    Weinhold, P. S., J. D. Stewart, H. Y. Liu, C. F. Lin, W. E. Garrett, and B. Yu. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain. Injury 38(8):973–978, 2007.PubMedCrossRefGoogle Scholar
  58. 58.
    Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin. Biomech. (Bristol, Avon) 21(9):977–983, 2006.CrossRefGoogle Scholar
  59. 59.
    Wu, J. L., A. Hosseini, M. Kozanek, H. R. Gadikota, T. J. T. Gill, and G. Li. Kinematics of the anterior cruciate ligament during gait. Am. J. Sports Med. 38(7):1475–1482, 2010.PubMedCrossRefGoogle Scholar
  60. 60.
    Yu, B., and W. E. Garrett. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 41(Suppl 1):i47–i51, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • G. M. Utturkar
    • 1
  • L. A. Irribarra
    • 1
  • K. A. Taylor
    • 1
  • C. E. Spritzer
    • 2
  • D. C. Taylor
    • 1
  • W. E. Garrett
    • 1
  • Louis E. DeFrate
    • 1
    • 3
    Email author
  1. 1.Duke Sports Medicine Center, Department of Orthopaedic SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of RadiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations