Advertisement

Annals of Biomedical Engineering

, Volume 40, Issue 12, pp 2541–2550 | Cite as

A Nonlinear Constitutive Model for Stress Relaxation in Ligaments and Tendons

  • Frances M. Davis
  • Raffaella De Vita
Article

Abstract

A novel constitutive model that describes stress relaxation in transversely isotropic soft collagenous tissues such as ligaments and tendons is presented. The model is formulated within the nonlinear integral representation framework proposed by Pipkin and Rogers (J. Mech. Phys. Solids. 16:59–72, 1968). It represents a departure from existing models in biomechanics since it describes not only the strain dependent stress relaxation behavior of collagenous tissues but also their finite strains and transverse isotropy. Axial stress–stretch data and stress relaxation data at different axial stretches are collected on rat tail tendon fascicles in order to compute the model parameters. Toward this end, the rat tail tendon fascicles are assumed to be incompressible and undergo an isochoric axisymmetric deformation. A comparison with the experimental data proves that, unlike the quasi-linear viscoelastic model (Fung, Biomechanics: Mechanics of Living Tissues. Springer, New York, 1993) the constitutive law can capture the observed nonlinearities in the stress relaxation response of rat tail tendon fascicles.

Keywords

Nonlinear viscoelasticity Stress relaxation Transversely isotropic material Finite strain Quasilinear viscoelasticity (QLV) Collagenous tissue Rat tail tendon 

Notes

Acknowledgments

Funding was provided by NSF Grant No. 1150397. Ms. Frances M. Davis was supported by the Ford Foundation Pre-Doctoral Fellowship and National Science Foundation Graduate Research Fellowship Program.

Conflict of Interest

The authors have no conflicts of interest with regard to this manuscript and the data presented therein.

References

  1. 1.
    Amiel, D., C. Frank, F. Harwood, J. Fronek, and W. Akeson. Tendons and ligaments: a morphological and biochemical comparison. J. Orthop. Res. 1:257–265, 1983.CrossRefGoogle Scholar
  2. 2.
    Abramowitch, S. D. and S. L. Y. Woo. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J. Biomech. Eng. T. ASME. 126:92–97, 2004.CrossRefGoogle Scholar
  3. 3.
    Atkinson, T., B. Ewers, and R. Haut. The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J. Biomech. 32:907–914, 1999.PubMedCrossRefGoogle Scholar
  4. 4.
    Bellemans, J., P. D’Hooghe, H. Vandenneucker, G. V. Damme, J. Victor. Soft tissue balance in total knee arthroplasty: does stress relaxation occur perioperatively? Clin. Orthop. Relat. Res. 452:49–52, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Byrd, R. H., R. B. Schnabel, and G. A. Shultz. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math. Program. 40:247–263, 1988.CrossRefGoogle Scholar
  6. 6.
    Cheng, S., E. C. Clarke, and L. E. Bilston. The effects of preconditioning strain on measured tissue properties. J. Biomech. 42:1360–1362, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    DeFrate, L. E., and G. Li. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model. Biomech. Model. Mechanobiol. 6:245–251, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    Derwin, K. A., and L. J. Soslowsky. A quantitative investigation of structure-function relationships in a tendon fascicle model. J. Biomech. Eng. T. ASME. 121:598–604, 1999.CrossRefGoogle Scholar
  9. 9.
    De Vita, R., and W. S. Slaughter. A constitutive law for the failure behavior of medial collateral ligaments. Biomech. Model. Mechanobiol. 6:189–197, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Guo, Z., and R. De Vita. A constitutive law for the failure behavior of medial collateral ligaments. Med. Eng. Phys. 31:1104–1109, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    Duenwald, S. E., R. Vanderby, and R. S. Lakes. Viscoelastic relaxation and recovery of tendon. Ann. Biomed. Eng. 37:1131–1140, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Duenwald, S. E., R. Vanderby, and R. S. Lakes. Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology. 47:1–14, 2010.PubMedGoogle Scholar
  13. 13.
    Dumitru, E., and R. Garrett. Solubilization of rat tail tendon collagen. Arch. Biochem. Biophys. 66:245–247, 1957.PubMedCrossRefGoogle Scholar
  14. 14.
    Eberl, C., R. Thompson, and D. Gianola. Digital image correlation and tracking with MATLAB: MATLAB file exchange http://www.mathworks.com/matlabcentral/fileexchange/12413, 2006.
  15. 15.
    Elliott, D. M., P. S. Robinson, J. A. Gimbel, J. J. Sarver, J.A. Abboud, R. V. Iozzo, and L. J. Soslowsky. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Fung, Y. C. Biomechanics: Mechanics of Living Tissues. New York: Springer, 1993.Google Scholar
  17. 17.
    Gupta, H. S., J. Seto, S. Krauss, P. Boesecke, and H. R. C. Screen. In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J. Struct. Biol. 169:183–191, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Hingorani, R. V., P. P. Provenzano, R. S. Lakes, A. Escarcega, and R. Vanderby. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32:306–312, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity. 61:1–48, 2000.CrossRefGoogle Scholar
  20. 20.
    Johnson, G. A., G. A. Livesay, S. L. Y. Woo, and K. R. Rajagopal. A single integral finite strain viscoelastic model of ligaments and tendons. J. Biomech. Eng. T. ASME. 118:221–226, 1996.CrossRefGoogle Scholar
  21. 21.
    Legerlotz, K., G. Riley, and H. Screen. Specimen dimensions influence the measurement of material properties in tendon fascicles. J. Biomech. 43:2274–2280, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Limbert, G. and J. Middleton. A transversely isotropic viscohyperelastic material—application to the modeling of biological soft connective tissues. Int. J. Solids Struct. 41:4237–4260, 2004.CrossRefGoogle Scholar
  23. 23.
    Pipkin, A. C., and T. G. Rogers. A nonlinear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids. 16:59–72, 1968.CrossRefGoogle Scholar
  24. 24.
    Provenzano, P., R. Lakes, T. Keenan, and R. Vanderby. Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29:908–914, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Provenzano, P. P., R. S. Lakes, D. T. Corr, and R. Vanderby. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model. Mechanobiol. 1:45–57, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Quapp, K. M., and J. A. Weiss. Material characterization of human medial collateral ligament. J. Biomech. Eng. 120:757–763, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Rajagopal, K. R., and A. S. Wineman. Response of anisotropic nonlinearly viscoelastic solids. Math. Mech. Solids. 14:490–501, 2009.CrossRefGoogle Scholar
  28. 28.
    Rigby, B., N. Hirai, J. Spikes, and H. Eyring. The mechanical properties of rat tail tendon. J. Gen. Physiol. 43:265, 1959.PubMedCrossRefGoogle Scholar
  29. 29.
    Roberts, D., and W. Green. Large axisymmetric deformation of a nonlinear viscoelastic circular membrane. Acta Mech. 36:31–42, 1980.CrossRefGoogle Scholar
  30. 30.
    Screen, H. R. C. Investigating load relaxation mechanics in tendon. J. Mech. Behav. Biomed. Mater. 1:51–58, 2008.CrossRefGoogle Scholar
  31. 31.
    Shen, Z. L., H. Kahn, R. Ballarini, and S. J. Eppell. Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100:3008–3015, 2011.Google Scholar
  32. 32.
    Thornton, G. M., A. Oliynyk, C. B. Frank, and N. G. Shrive. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J. Orthopaed. Res. 15:652–656, 1997.CrossRefGoogle Scholar
  33. 33.
    Truesdell, C., W. Noll, and S. Antman. The Non-Linear Field Theories of Mechanics. Berlin, Heidelberg: Springer, 2004.Google Scholar
  34. 34.
    Vardy, M. D., T. R. Gardner, F. Cosman, R. J. Scotti, M. S. Mikhail, A. O. Preiss-Bloom, J. K. Williams, J. M. Cline, and R. Lindsay. The effects of hormone replacement on the biomechanical properties of the uterosacral and round ligaments in the monkey model. Am. J. Obstet. Gynecol. 192:1741–1751, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  1. 1.Mechanics of Soft Biological Systems Laboratory, Department of Engineering Science and MechanicsVirginia TechBlacksburgUSA

Personalised recommendations