Annals of Biomedical Engineering

, Volume 40, Issue 10, pp 2228–2242 | Cite as

Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery

  • Sethuraman Sankaran
  • Mahdi Esmaily Moghadam
  • Andrew M. Kahn
  • Elaine E. Tseng
  • Julius M. Guccione
  • Alison L. MarsdenEmail author


We present a computational framework for multiscale modeling and simulation of blood flow in coronary artery bypass graft (CABG) patients. Using this framework, only CT and non-invasive clinical measurements are required without the need to assume pressure and/or flow waveforms in the coronaries and we can capture global circulatory dynamics. We demonstrate this methodology in a case study of a patient with multiple CABGs. A patient-specific model of the blood vessels is constructed from CT image data to include the aorta, aortic branch vessels (brachiocephalic artery and carotids), the coronary arteries and multiple bypass grafts. The rest of the circulatory system is modeled using a lumped parameter network (LPN) 0 dimensional (0D) system comprised of resistances, capacitors (compliance), inductors (inertance), elastance and diodes (valves) that are tuned to match patient-specific clinical data. A finite element solver is used to compute blood flow and pressure in the 3D (3 dimensional) model, and this solver is implicitly coupled to the 0D LPN code at all inlets and outlets. By systematically parameterizing the graft geometry, we evaluate the influence of graft shape on the local hemodynamics, and global circulatory dynamics. Virtual manipulation of graft geometry is automated using Bezier splines and control points along the pathlines. Using this framework, we quantify wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries. We also compare pressures, flow rates and ventricular pressure–volume loops pre- and post-bypass graft surgery. We observe that PV loops do not change significantly after CABG but that both coronary perfusion and local hemodynamic parameters near the anastomosis region change substantially. Implications for future patient-specific optimization of CABG are discussed.


Hemodynamics Bypass graft Wall shear stress Coronary artery Multiscale modeling 



The authors acknowledge funding from an American Heart Association postdoctoral fellowship, the Leducq Foundation, a Burroughs Wellcome Fund Career Award at the Scientific Interface, and NIH grant RHL102596A for funding this work. We thank Hyun Jin Kim for expertise on coronary modeling, and Francesco Migliavacca for expertise on multiscale modeling. Dr. Guccione acknowledges funding from the National Institute of Health, grant numbers R01HL077921 and R01HL086400.


  1. 1.
    Agoshkov, V., A. Quarteroni, and G. Rozza. A mathematical approach in the design of arterial bypass anastomosis using unsteady stokes equations. J. Sci. Comput. 38:139–161, 2006.CrossRefGoogle Scholar
  2. 2.
    Bassiouny, H., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: mechanical injury or flow induced. J. Vasc. Surg. 10:326–337, 1989.Google Scholar
  3. 3.
    Bazilevs, Y., M.-C. Hsu, D. Besnon, S. Sankaran, and A. Marsden. Computational fluid-structure interaction: Methods and application to a total cavopulmonary connection. Comput. Mech. 45(1):77–99, 2009.CrossRefGoogle Scholar
  4. 4.
    Bogren, H., R. Klipstein, D. Firmin, R. Mohiaddin, S. Underwood, R. Rees, and D. Longmore. Quantitation of antegrade and retrograde blood-flow in the human aorta by magnetic-resonance velocity mapping. Am. Heart J. 117(6):1214–1222, 1989.PubMedCrossRefGoogle Scholar
  5. 5.
    Bryan, A., and G. D. Angelini. The biology of saphenous vein graft occlusion: etiology and strategies for prevention. Curr. Opin. Cardiol. 9:641–649, 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Burattini, R., P. Sipkema, G. Vanhuis, and N. Westerhof. Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model. Ann. Biomed. Eng. 13(5):385–404, 1985.PubMedCrossRefGoogle Scholar
  7. 7.
    DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arter. Thromb. Vasc. Biol. 12:1254–1257, 1992CrossRefGoogle Scholar
  8. 8.
    Dur, O., S. Coskun, K. Coskun, D. Frakes, L. Kara, and K. Pekkan. Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc. Eng. Technol. 2(1):35–47, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Esmaily Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. Vignon-Clementel, A. Marsden, and Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3):277–291, 2011.CrossRefGoogle Scholar
  10. 10.
    Esmaily Moghadam, M., I. Vignon-Clementel, R. Figliola, and A. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys., 2011, in review.Google Scholar
  11. 11.
    Giddens, D., C. K. Zarins, and S. Glagov. The role of fluid mechanics in localization and detection of atherosclerosis. J. Biomech. Eng. 115:588–594, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Giordana, S., S. Sherwin, J. Pelro, D. Doorly, J. Crane, K. Lee, N. Cheshire, and C. Caro. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J. Biomech. Eng. 127:1087–1098, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Haruguchi, H., and S. Teraoka. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artifi. Organs 6:227–235, 2003.CrossRefGoogle Scholar
  14. 14.
    Holzapfel, G. A., T. Gasser, and T. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.CrossRefGoogle Scholar
  15. 15.
    Inzoli, F., F. Migliavacca, and G. Pennati. Numerical analysis of steady flow in aorto-coronary bypass 3D model. J. Biomech. Eng. 118:172–179, 1996.PubMedCrossRefGoogle Scholar
  16. 16.
    Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized-alpha method for integrating the filtered Navier Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(3–4):305–319, 2000.CrossRefGoogle Scholar
  17. 17.
    Johnson, K., P. Sharma, and J. Oshinski. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 t. J. Biomech. 41:595–602, 2008.PubMedCrossRefGoogle Scholar
  18. 18.
    Katia, L., R. Balossino, F. Migliavacca, G. Pennati, E. Bove, M. de Leval, and G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 28:1129–1141, 2004.Google Scholar
  19. 19.
    Keynton, R., M. Evancho, R. Sims, N. Rodway, A. Gobin, and S. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomosis: an in vivo model study. J. Biomech. Eng. 123:464–473, 2001.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, H., I. E. Vignon-Clementel, J. Coogan, C. Figueroa, K. Jansen, and C. Taylor. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, H., I. Vignon-Clementel, A. Figueroa, J. Ladisa, K. Jansen, J. Feinstein, and C. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38(10):3195–3209, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Kohler, T., T. R. Kirkman, L. W. Kraiss, B. K. Zierler, and A. W. Clowes. Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ. Res. 69:1557–1565, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Ku, D. Blood flow in arteries. Ann. Rev. Fluid Mech. 29:399–434, 1997.CrossRefGoogle Scholar
  24. 24.
    Lagan, K., G. Dubini, F. Migliavacca, R. Pietrabissa, G. Pennati, A. Veneziani, and A. Quarteroni. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364, 2002.Google Scholar
  25. 25.
    Lei, M., J. Archie, and C. Kleinstreur. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25(4):637–646, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu, M., G. S. Roubin, and S. King. Restenosis after coronary angioplasty: potential biologic determinants and role of intimal hyperplasia. Circulation 79:1374–1387, 1989.PubMedCrossRefGoogle Scholar
  27. 27.
    Loth, F., P. F. Fischer, and H. S. Bassiouny. Blood flow in end-to-side anastomosis. Ann. Rev. Fluid Mech. 40:367–393, 2008.CrossRefGoogle Scholar
  28. 28.
    Loth, F., S. A. Jones, C. K. Zarins, D. P. Giddens, R. F. Nassar, S. Glagov, and H. S. Bassiouny. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124:44–51, 2002.PubMedCrossRefGoogle Scholar
  29. 29.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(21):2035–2042, 1999.CrossRefGoogle Scholar
  30. 30.
    Manthaa, A., C. Karmonikc, G. Benndorfb, C. Strotherc, and R. Metcalfea. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 27:1113–1118, 2006.Google Scholar
  31. 31.
    Marsden, A., J. Feinstein, and C. Taylor. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 197(21–24):1890–1905, 2008.CrossRefGoogle Scholar
  32. 32.
    Mehta, D., M. B. Izzat, A. J. Bryan, and G. D. Angelini. Towards the prevention of vein graft failure. Int. J. Cardiol. 62(1):S55–S63, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Migliavacca, F., and G. Dubini. Computational modeling of vascular anastomoses. Biomech. Model. Mechanobiol. 3:235–250, 2005.PubMedCrossRefGoogle Scholar
  34. 34.
    Moore, J., D. A. Steinman, S. Prakash, K. W. Johnson, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121:265–272, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Neal, M., and J. Bassingthwaighte. Subject-specific model estimation of cardiac output and blood volume during hemorrhage. Cardiovasc. Eng. 7(3):97–120, 2007.PubMedCrossRefGoogle Scholar
  36. 36.
    Nikkari, S., and A. W. Clowes. Restenosis after vascular reconstruction. Ann. Med. 26:95–100, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Ojha, M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J. Biomech. 26(12):1377–1388, 1993.PubMedCrossRefGoogle Scholar
  38. 38.
    Ojha, M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ. Res. 74:1227–1231, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Rittgers, S., P. Karayannacos, J. Guy, R. Nerem, G. Shaw, J. Hostetler, and J. Vasko. Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circ. Res. 42(6):792–801, 1978.PubMedCrossRefGoogle Scholar
  40. 40.
    Samady, H., P. Eshtehardi, M. McDaniel, J. Suo, S. Dhawan, C. Maynard, L. Timmins, A. Quyyumi, and D. Giddens. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788, 2011.PubMedCrossRefGoogle Scholar
  41. 41.
    Sankaran, S., and A. Marsden. The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Phys. Fluids 22:121902, 2010.CrossRefGoogle Scholar
  42. 42.
    Sankaran, S., and A. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133:031001, 2011.PubMedCrossRefGoogle Scholar
  43. 43.
    Sankaranarayanan, M., D. Ghista, C. Poh, T. Seng, and G. Kassab. Analysis of blood flow in an out-of-plane CABG model. Am. J. Physiol. Heart Circ. Physiol. 291:H283–H295, 2006PubMedCrossRefGoogle Scholar
  44. 44.
    Senzaki, H., C. H. Chen, and D. A. Kass. Single beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94(10):2497–2506, 1996.PubMedCrossRefGoogle Scholar
  45. 45.
    Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42(4):550–554, 2009.PubMedCrossRefGoogle Scholar
  46. 46.
    Siogkas, P. K., A. I. Sakellarios, T. P. Exarchos, K. Stefanou, D. I. Fotiadis, K. Naka, L. Michalis, N. Filipovic, and O. Parodi. Blood flow in arterial segments: rigid vs. deformable walls simulations. J. Serbian Soc. Comput. Mech. 5(1):69–77, 2011.Google Scholar
  47. 47.
    Staalsen, N., M. Ulrich, J. Winther, E. Pedersen, T. How, and H. Nygaard. The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo. J. Vasc. Surg. 21:460–471, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    Taylor, C., M. Draney, J. Ku, D. Parker, B. Steele, K. Wang, and C. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5):231–247, 1999.PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1997.CrossRefGoogle Scholar
  50. 50.
    Walker, J., M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, D. Saloner, and J. M. Guccione. MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. 289:H692–H700, 2005.CrossRefGoogle Scholar
  51. 51.
    Wilson, N., K. Wang, R. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.CrossRefGoogle Scholar
  52. 52.
    Yang, W., I. Vignon-Clementel, G. Troianowski, V. Mohan Reddy, J. Feinstein, and A. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.PubMedCrossRefGoogle Scholar
  53. 53.
    Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25:1303–1310, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Zarins, C., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5:413–420, 1987.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Sethuraman Sankaran
    • 1
  • Mahdi Esmaily Moghadam
    • 1
  • Andrew M. Kahn
    • 2
  • Elaine E. Tseng
    • 3
  • Julius M. Guccione
    • 3
  • Alison L. Marsden
    • 1
    Email author
  1. 1.Department of MAEUCSDLa JollaUSA
  2. 2.Department of MedicineUCSDLa JollaUSA
  3. 3.Department of SurgeryUCSFSan FranciscoUSA

Personalised recommendations