Annals of Biomedical Engineering

, Volume 40, Issue 10, pp 2188–2211 | Cite as

Automatic Neck Plane Detection and 3D Geometric Characterization of Aneurysmal Sacs

  • Marina Piccinelli
  • David A. Steinman
  • Yiemeng Hoi
  • Frank Tong
  • Alessandro Veneziani
  • Luca Antiga
Article

Abstract

Geometric indices defined on intracranial aneurysms have been widely used in rupture risk assessment and surgical planning. However, most indices employed in clinical settings are currently evaluated based on two-dimensional images that inevitably fail to capture the three-dimensional nature of complex aneurysmal shapes. In addition, since measurements are performed manually, they can suffer from poor inter and intra operator repeatability. The purpose of the current work is to introduce objective and robust techniques for the 3D characterization of intracranial aneurysms, while preserving a close connection to the way aneurysms are currently characterized in clinical settings. Techniques for automatically identifying the neck plane, key aneurysm dimensions, shape factors, and orientations relative to the parent vessel are demonstrated in a population of 15 sidewall and 15 terminal aneurysms whose surface has been obtained by two trained operators using both level-set segmentation and thresholding, the latter reflecting typical clinical practice. Automatically-identified neck planes are shown to be in concordance with those manually positioned by an expert neurosurgeon, and automatically-derived geometric indices are shown to be largely insensitive to segmentation method or operator. By capturing the 3D nature of aneurysmal sacs and by minimizing observer variability, our approach allows large retrospective and prospective studies on aneurysm geometric risk factors to be performed using routinely acquired clinical images.

Keywords

Cerebral aneurysms Morphology Geometry Neck section automatic identification 3D geometry and morphology quantification 

References

  1. 1.
    Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.PubMedCrossRefGoogle Scholar
  2. 2.
    Antiga, L. and D. A. Steinman. Vascular Modeling Toolkit, 2008. Available at http://www.vmtk.org. Accessed 20 Apr 2012.
  3. 3.
    Anxionnat, R., S. Bracard, X. Ducrocq, Y. Trousset, L. Launay, E. Kerrien, M. Braun, R. Vaillant, F. Scomazzoni, A. Lebedinsky, and L. Picard. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 218:799–808, 2001.PubMedGoogle Scholar
  4. 4.
    Baharoglu, M. I., C. M. Schirmer, D. A. Hoit, B. L. Gao, and A. M. Malek. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms. Stroke 41:1423–1430, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Cardenes, R., J. Pozo, H. Bogunovic, I. Larrabide, and A. Frangi. Automatic aneurysm neck detection using surface Voronoi Diagrams. IEEE Trans. Med. Imaging 30(10):1863–1876, 2011.PubMedCrossRefGoogle Scholar
  6. 6.
    Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32:145–151, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Cebral, J. R., M. Sheridan, and C. M. Putman. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am. J. Neuroradiol. 31:304–310, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Chien, A., J. Sayre, and F. Vinuela. Comparative morphological analysis of the geometry of ruptured and unruptured aneurysms. Neurosurgery 69:349–356, 2011.PubMedCrossRefGoogle Scholar
  10. 10.
    Dhar, B. E., M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N. Hopkins, and H. Meng. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–196, 2008.PubMedCrossRefGoogle Scholar
  11. 11.
    Ebel, R. L. Estimation of the reliability of ratings. Psychometrika 16:407–424, 1951.CrossRefGoogle Scholar
  12. 12.
    Ford, M. D., Y. Hoi, M. Piccinelli, L. Antiga, and D. A. Steinman. An objective approach to digital removal of saccular aneurysms: techniques and applications. Br. J. Radiol. 82:S55–S61, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Ford, M. D., S. W. Lee, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: towards a surrogate geometric marker of intra-aneurysmal hemodynamics. J. Biomech. 41:241–248, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoh, B. L., C. L. Sistrom, C. S. Firment, G. L. Fautheree, G. J. Velat, J. H. Whiting, J. F. Reavey-Cantwell, and S. B. Lewis. Bottleneck factor and height-width ratio: association with ruptured aneurysms in patients with multiple cerebral aneurysms. Neurosurgery 61:716–722, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoi, Y., H. Meng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, and L. N. Hopkins. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg. 101:676–681, 2004.PubMedCrossRefGoogle Scholar
  16. 16.
    Larrabide, I., M. C. Villa-Uriol, R. Cardenes, M. J. Pozo, J. Macho, L. S. Roman, J. Blasco, E. Vivas, A. Manzo, D. R. Hose, and A. F. Frangi. Three dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Med. Phys. 38:2439–2449, 2011.PubMedCrossRefGoogle Scholar
  17. 17.
    Lauric, A., E. L. Miller, M. I. Baharoglu, and A. M. Malek. 3D shape analysis of intracranial aneurysms using the writhe number as a discriminant for rupture. Ann. Biomed. Eng. 39:1457–1469, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–273, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Ma, D., M. Tremmel, R. A. Paluch, E. I. Levy, H. Meng, and J. Mocco. Size ratio for clinical assessment of intracranial aneurysm rupture risk. Neurol. Res. 32:482–486, 2010.PubMedCrossRefGoogle Scholar
  20. 20.
    Mantha, A. R., G. Benndorf, A. Hernandez, and R. W. Metcalfe. Stability of pulsatile blood flow at the ostium of cerebral aneurysms. J. Biomech. 42:1081–1087, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Parlea, L. P., R. Fahrig, D. W. Holdsworth, and S. P. Lownie. An analysis of the geometry of saccular intracranial aneurysms. AJNR Am. J. Neuroradiol. 20:1079–1089, 1999.PubMedGoogle Scholar
  22. 22.
    Passerini, T., L. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi, and A. Veneziani. An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms. Cardiovasc. Eng. Technol. 3:26–40, 2012.CrossRefGoogle Scholar
  23. 23.
    Piccinelli, M., S. Bacigaluppi, E. Boccardi, B. Ene-Iordache, A. Remuzzi, A. Veneziani, and L. Antiga. Geometry of internal carotid artery and recurrent patterns in location, orientation and rupture status of lateral aneurysms: an image-based computational study. Neurosurgery 68(5):1270–1285, 2011.PubMedGoogle Scholar
  24. 24.
    Piccinelli, M., A. Veneziani, D. A. Steinman, A. Remuzzi, and L. Antiga. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28:1141–1155, 2009.PubMedCrossRefGoogle Scholar
  25. 25.
    R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2005. http://www.R-project.org. Accessed 20 Apr 2012.
  26. 26.
    Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and ruptured risk. J. Neurosurg. 102:355–362, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Raghavan, M. L., J. Torner, J. Zhang, I. Meissner, D. Piepgras, J. Huston, and R. Brown. Assessment of intracranuial aneurysms morphology in a large patient population. In: 6th World Congress of Biomechanics 2010, Singapore.Google Scholar
  28. 28.
    Ryu, C. W., O. K. Kwon, J. S. Koh, and E. J. Kim. Analysis of aneurysm rupture in relation to the geometric indices: aspect ratio, volume, and volume-to-neck ratio. Neuroradiology 53(11):883–889, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Sangalli, M. L., P. Secchi, S. Vantini, and A. Veneziani. A case study in exploratory functional data analysis: geometrical features of the internal carotid artery. J. Am. Stat. Assoc. 104:37–48, 2009.CrossRefGoogle Scholar
  30. 30.
    Sgouritsa E., A. Mohamed, H. Morsi, H. Shaltoni, M. Mawad, and I. Kakadiaris. Neck localization and geometry quantification of intracranial aneurysms. In: IEEE International Symposium on Biomedical Imaging, 2010, pp. 1057–1060.Google Scholar
  31. 31.
    Tateshima, A., A. Chien, J. Sayre, J. Cebral, and F. Vinuela. The effect of aneurysm geometry on the intra-aneurysmal flow condition. Neuroradiology 52:1135–1141, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Ujiie, H., H. Tachibana, O. Hiramatsu, A. L. Hazel, T. Matsumoto, Y. Ogasawara, H. Nakajima, T. Hori, K. Takakura, and F. Kajiya. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–129, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Weir, J. P. Quantifying test-reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 19:231–240, 2005.PubMedGoogle Scholar
  34. 34.
    Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Yasuda, R., C. M. Strother, W. Taki, K. Shinki, K. Royalty, K. Pulfer, and C. Karmonik. Aneurysm volume-to-ostium area ratio: a parameter useful in discriminating the rupture status of intracranial aneurysms. Neurosurgery 68:310–317, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Marina Piccinelli
    • 1
  • David A. Steinman
    • 2
  • Yiemeng Hoi
    • 2
  • Frank Tong
    • 3
  • Alessandro Veneziani
    • 1
  • Luca Antiga
    • 4
    • 5
  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  3. 3.Department of Radiology and NeurosurgeryEmory University HospitalAtlantaUSA
  4. 4.Orobix srlBergamoItaly
  5. 5.Department of BioengineeringMario Negri InstituteBergamoItaly

Personalised recommendations