Skip to main content
Log in

Mitochondrial Dynamics and Motility Inside Living Vascular Endothelial Cells: Role of Bioenergetics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mitochondrial network is dynamic with conformations that vary between a tubular continuum and a fragmented state. The equilibrium between mitochondrial fusion/fission, as well as the organelle motility, determine network morphology and ultimately mitochondrial/cell function. Network morphology has been linked with the energy state in different cell types. In this study, we examined how bioenergetic factors affect mitochondrial dynamics/motility in cultured vascular endothelial cells (ECs). ECs were transduced with mitochondria-targeted green fluorescent protein (mito-GFP) and exposed to inhibitors of oxidative phosphorylation (OXPHOS) or ATP synthesis. Time-lapse fluorescence videos were acquired and a mathematical program that calculates size and speed of each mitochondrial object at each time frame was developed. Our data showed that inner mitochondrial membrane potential (ΔΨm), ATP produced by glycolysis, and, to a lesser degree, ATP produced by mitochondria are critical for maintaining the mitochondrial network, and different metabolic stresses induce distinct morphological patterns (e.g., mitochondrial depolarization is necessary for “donut” formation). Mitochondrial movement, characterized by Brownian diffusion with occasional bursts in displacement magnitude, was inhibited under the same conditions that resulted in increased fission. Hence, imaging/mathematical analysis shed light on the relationship between bioenergetics and mitochondrial network morphology; the latter may determine EC survival under metabolic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Benard, G., N. Bellance, D. James, P. Parrone, H. Fernandez, T. Letellier, and R. Rossignol. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120:838–848, 2007.

    Article  PubMed  CAS  Google Scholar 

  2. Bomzon, Z., M. M. Knight, D. L. Bader, and E. Kimmel. Mitochondrial dynamics in chondrocytes and their connection to the mechanical properties of the cytoplasm. J. Biomech. Eng. 128:674–679, 2006.

    Article  PubMed  Google Scholar 

  3. Brookes, P. S., Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287:C817–C833, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Cassidy-Stone, A., J. E. Chipuk, E. Ingerman, C. Song, C. Yoo, T. Kuwana, M. J. Kurth, J. T. Shaw, J. E. Hinshaw, D. R. Green, and J. Nunnari. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14:193–204, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Chang, C. R., and C. Blackstone. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. N. Y. Acad. Sci. 1201:34–39, 2010.

    Article  PubMed  CAS  Google Scholar 

  6. Chang, K. T., R. F. Niescier, and K. T. Min. Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc. Natl Acad. Sci. USA 108:15456–15461, 2011.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, H., and D. C. Chan. Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14 Spec No. 2:R283–R289, 2005.

    Google Scholar 

  8. Chen, H., A. Chomyn, and D. C. Chan. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280:26185–26192, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Collins, T. J. ImageJ for microscopy. Biotechniques 43:25–30, 2007.

    Article  PubMed  Google Scholar 

  10. Culic, O., M. L. Gruwel, and J. Schrader. Energy turnover of vascular endothelial cells. Am. J. Physiol. 273:C205–C213, 1997.

    PubMed  CAS  Google Scholar 

  11. De Vos, K. J., V. J. Allan, A. J. Grierson, and M. P. Sheetz. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr. Biol. 15:678–683, 2005.

    Article  PubMed  Google Scholar 

  12. Demidenko, E. Mixed Models: Theory and Applications (Wiley’s Series in Probability and Statistics). Hoboken, NJ: Wiley, 2004.

    Book  Google Scholar 

  13. Duvezin-Caubet, S., R. Jagasia, J. Wagener, S. Hofmann, A. Trifunovic, A. Hansson, A. Chomyn, M. F. Bauer, G. Attardi, N. G. Larsson, W. Neupert, and A. S. Reichert. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. 281:37972–37979, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Frank, S., B. Gaume, E. S. Bergmann-Leitner, W. W. Leitner, E. G. Robert, F. Catez, C. L. Smith, and R. J. Youle. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1:515–525, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Frederick, R. L., and J. M. Shaw. Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668–1675, 2007.

    Article  PubMed  CAS  Google Scholar 

  16. Giedt, R. J., C. Yang, J. L. Zweier, A. Matzavinos, and B. R. Alevriadou. Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 52:348–356, 2012.

    Article  PubMed  CAS  Google Scholar 

  17. Gonzalez, R. C., and R. E. Woods. Digital Image Processing (3rd ed.). Upper Saddle River, NJ: Pearson Prentice Hall, 2008.

    Google Scholar 

  18. Gottlob, K., N. Majewski, S. Kennedy, E. Kandel, R. B. Robey, and N. Hay. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15:1406–1418, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Guillery, O., F. Malka, P. Frachon, D. Milea, M. Rojo, and A. Lombes. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts. Neuromuscul. Disord. 18:319–330, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Hahn-Windgassen, A., V. Nogueira, C. C. Chen, J. E. Skeen, N. Sonenberg, and N. Hay. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280:32081–32089, 2005.

    Article  PubMed  CAS  Google Scholar 

  21. Hansen, C., J. G. Nagy, and D. P. O’Leary. Deblurring Images—Matrices, Spectra, and Filtering. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2006.

    Book  Google Scholar 

  22. Haralick, R. M., and L. G. Shapiro. Computer and Robot Vision, Vol. I. Reading, MA: Addison-Wesley, 1992.

    Google Scholar 

  23. Hollenbeck, P. J., and W. M. Saxton. The axonal transport of mitochondria. J. Cell Sci. 118:5411–5419, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Jahani-Asl, A., M. Germain, and R. S. Slack. Mitochondria: joining forces to thwart cell death. Biochim. Biophys. Acta 1802:162–166, 2010.

    Article  PubMed  CAS  Google Scholar 

  25. Jaqaman, K., D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Jendrach, M., S. Mai, S. Pohl, M. Voth, and J. Bereiter-Hahn. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 8:293–304, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Kuznetsov, A. V., M. Hermann, V. Saks, P. Hengster, and R. Margreiter. The cell-type specificity of mitochondrial dynamics. Int. J. Biochem. Cell Biol. 41:1928–1939, 2009.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, Y. J., S. Y. Jeong, M. Karbowski, C. L. Smith, and R. J. Youle. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15:5001–5011, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, X., and G. Hajnoczky. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ. 18:1561–1572, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. McBride, H. M., M. Neuspiel, and S. Wasiak. Mitochondria: more than just a powerhouse. Curr. Biol. 16:R551–R560, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Meeusen, S., J. M. McCaffery, and J. Nunnari. Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752, 2004.

    Article  PubMed  CAS  Google Scholar 

  32. Misko, A., S. Jiang, I. Wegorzewska, J. Milbrandt, and R. H. Baloh. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30:4232–4240, 2010.

    Article  PubMed  CAS  Google Scholar 

  33. Mitra, K., C. Wunder, B. Roysam, G. Lin, and J. Lippincott-Schwartz. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl Acad. Sci. USA 106:11960–11965, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Muller, M., S. L. Mironov, M. V. Ivannikov, J. Schmidt, and D. W. Richter. Mitochondrial organization and motility probed by two-photon microscopy in cultured mouse brainstem neurons. Exp. Cell Res. 303:114–127, 2005.

    PubMed  Google Scholar 

  35. Pletjushkina, O. Y., K. G. Lyamzaev, E. N. Popova, O. K. Nepryakhina, O. Y. Ivanova, L. V. Domnina, B. V. Chernyak, and V. P. Skulachev. Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim. Biophys. Acta 1757:518–524, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Qian, H., M. P. Sheetz, and E. L. Elson. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60:910–921, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Rambold, A. S., B. Kostelecky, N. Elia, and J. Lippincott-Schwartz. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108(25):10190–10195, 2011.

    Article  PubMed  CAS  Google Scholar 

  38. Saotome, M., D. Safiulina, G. Szabadkai, S. Das, A. Fransson, P. Aspenstrom, R. Rizzuto, and G. Hajnoczky. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. USA 105:20728–20733, 2008.

    Article  PubMed  CAS  Google Scholar 

  39. Saunter, C. D., M. D. Perng, G. D. Love, and R. A. Quinlan. Stochastically determined directed movement explains the dominant small-scale mitochondrial movements within non-neuronal tissue culture cells. FEBS Lett. 583:1267–1273, 2009.

    Article  PubMed  CAS  Google Scholar 

  40. Sauvanet, C., S. Duvezin-Caubet, J. P. di Rago, and M. Rojo. Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Semin. Cell Dev. Biol. 21:558–565, 2010.

    Article  PubMed  CAS  Google Scholar 

  41. Saxton, M. J., and K. Jacobson. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26:373–399, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Sedgewick, R. Algorithms in C, Parts 1–4, 3rd ed. Reading, MA: Addison-Wesley, 1998.

  43. Song, W., B. Bossy, O. J. Martin, A. Hicks, S. Lubitz, A. B. Knott, and E. Bossy-Wetzel. Assessing mitochondrial morphology and dynamics using fluorescence wide-field microscopy and 3D image processing. Methods 46:295–303, 2008.

    Article  PubMed  CAS  Google Scholar 

  44. Soubannier, V., and H. M. McBride. Positioning mitochondrial plasticity within cellular signaling cascades. Biochim. Biophys. Acta 1793:154–170, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Tondera, D., S. Grandemange, A. Jourdain, M. Karbowski, Y. Mattenberger, S. Herzig, S. Da Cruz, P. Clerc, I. Raschke, C. Merkwirth, S. Ehses, F. Krause, D. C. Chan, C. Alexander, C. Bauer, R. Youle, T. Langer, and J. C. Martinou. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28:1589–1600, 2009.

    Article  PubMed  CAS  Google Scholar 

  46. Widlansky, M. E., and D. D. Gutterman. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid. Redox Signal. 15:1517–1530, 2011.

    Article  PubMed  CAS  Google Scholar 

  47. Yi, M., D. Weaver, and G. Hajnoczky. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167:661–672, 2004.

    Article  PubMed  CAS  Google Scholar 

  48. Yoon, Y. S., D. S. Yoon, I. K. Lim, S. H. Yoon, H. Y. Chung, M. Rojo, F. Malka, M. J. Jou, J. C. Martinou, and G. Yoon. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 209:468–480, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Youle, R. J., and M. Karbowski. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 6:657–663, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. C. J. Lloyd, undergraduate researcher, for his assistance with data analysis. This work was supported by National Institutes of Health (NIH) grant HL106392 to B. R. Alevriadou and an American Heart (AHA) predoctoral fellowship to R. J. Giedt. D. R. Pfeiffer was supported by the Ellie Kovalck Charitable Trust. A. Matzavinos was supported in part by the Mathematical Biosciences Institute at the Ohio State University and National Science Foundation (NSF) grant DMS-093164. C.-Y. Kao was supported in part by NSF grant DMS-0811003 and an Alfred P. Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rita Alevriadou.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 18981 kb)

Supplementary material 2 (MPG 982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giedt, R.J., Pfeiffer, D.R., Matzavinos, A. et al. Mitochondrial Dynamics and Motility Inside Living Vascular Endothelial Cells: Role of Bioenergetics. Ann Biomed Eng 40, 1903–1916 (2012). https://doi.org/10.1007/s10439-012-0568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0568-6

Keywords

Navigation