Annals of Biomedical Engineering

, Volume 40, Issue 9, pp 2005–2018 | Cite as

Modeling Brain Injury Response for Rotational Velocities of Varying Directions and Magnitudes

  • Ashley A. Weaver
  • Kerry A. Danelson
  • Joel D. Stitzel


An estimated 1.7 million people in the United States sustain a traumatic brain injury (TBI) annually. To investigate the effects of rotational motions on TBI risk and location, this study modeled rotational velocities of five magnitudes and 26 directions of rotation using the Simulated Injury Monitor finite element brain model. The volume fraction of the total brain exceeding a predetermined strain threshold, the Cumulative Strain Damage Measure (CSDM), was investigated to evaluate global model response. To evaluate regional response, this metric was computed relative to individual brain structures and termed the Structure Cumulative Strain Damage Measure (SCSDM). CSDM increased as input magnitude increased and varied with the direction of rotation. CSDM was 0.55–1.7 times larger in simulations with transverse plane rotation compared to those without transverse plane rotation. The largest SCSDM in the cerebrum and brainstem occurred with rotations in the transverse and sagittal planes, respectively. Velocities causing medial rotation of the cerebellum resulted in the largest SCSDM in this structure. For velocities of the same magnitude, injury risk calculated from CSDM varied from 0 to 97% with variations in the direction of rotation. These findings demonstrate injury risk, as estimated by CSDM and SCSDM, is affected by the direction of rotation and input magnitude, and these may be important considerations for injury prediction.


Biomechanics Brain Computational modeling Computational simulation Concussion Finite element model SIMon Strain Traumatic brain injury 


  1. 1.
    AAAM. Abbreviated Injury Scale 2005 (Update 2008). Association for the Advancement of Automotive Medicine, 2008.Google Scholar
  2. 2.
    Amen, D. G., J. C. Wu, D. Taylor, and K. Willeumier. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J. Psychoactive Drugs 43:1–5, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Atabaki, S. M. Pediatric head injury. Pediatr. Rev. 28:215–224, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Bain, A. C., and D. F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122:615–622, 2000.PubMedCrossRefGoogle Scholar
  5. 5.
    Bandak, F. A., and R. H. Eppinger. A three-dimensional finite element analysis of the human brain under combined rotational and translational accelerations. Stapp Car Crash J. 38:145–163, 1994.Google Scholar
  6. 6.
    Bandak, F. A., A. X. Zhang, R. E. Tannous, F. DiMasi, P. Masiello, and R. H. Eppinger. Simon: a simulated injury monitor; application to head injury assessment. In: International Technical Conference on the Enhanced Safety of Vehicles. Washington, DC: National Highway Traffic Safety Administration, 2001.Google Scholar
  7. 7.
    Benavidez, D. A., J. M. Fletcher, H. J. Hannay, S. T. Bland, S. E. Caudle, D. B. Mendelsohn, J. Yeakley, D. G. Brunder, H. Harward, J. Song, N. A. Perachio, D. Bruce, R. S. Scheibel, M. A. Lilly, K. Verger-Maestre, and H. S. Levin. Corpus callosum damage and interhemispheric transfer of information following closed head injury in children. Cortex 35:315–336, 1999.PubMedCrossRefGoogle Scholar
  8. 8.
    Bhatoe, H. S. Primary brainstem injury: benign course and improved survival. Acta Neurochir. (Wien) 141:515–519, 1999.CrossRefGoogle Scholar
  9. 9.
    Blumbergs, P. C., N. R. Jones, and J. B. North. Diffuse axonal injury in head trauma. J. Neurol. Neurosurg. Psychiatry 52:838–841, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Broglio, S. P., B. Schnebel, J. J. Sosnoff, S. Shin, X. Fend, X. He, and J. Zimmerman. Biomechanical properties of concussions in high school football. Med. Sci. Sports Exerc. 42:2064–2071, 2010.PubMedCrossRefGoogle Scholar
  11. 11.
    Broglio, S. P., J. J. Sosnoff, S. Shin, X. He, C. Alcaraz, and J. Zimmerman. Head impacts during high school football: a biomechanical assessment. J. Athl. Train. 44:342–349, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Brolinson, P. G., S. Manoogian, D. McNeely, M. Goforth, R. Greenwald, and S. Duma. Analysis of linear head accelerations from collegiate football impacts. Curr. Sports Med. Rep. 5:23–28, 2006.PubMedGoogle Scholar
  13. 13.
    Covassin, T., C. B. Swanik, and M. L. Sachs. Epidemiological considerations of concussions among intercollegiate athletes. Appl. Neuropsychol. 10:12–22, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Dikmen, S. S., J. D. Corrigan, H. S. Levin, J. Machamer, W. Stiers, and M. G. Weisskopf. Cognitive outcome following traumatic brain injury. J. Head Trauma Rehabil. 24:430–438, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10:732–739, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Duma, S. M., S. J. Manoogian, W. R. Bussone, P. G. Brolinson, M. W. Goforth, J. J. Donnenwerth, R. M. Greenwald, J. J. Chu, and J. J. Crisco. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15:3–8, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Duma, S. M., and S. Rowson. Every Newton Hertz: a macro to micro approach to investigating brain injury. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:1123–1126, 2009.PubMedGoogle Scholar
  18. 18.
    Duma, S. M., and S. Rowson. Past, present, and future of head injury research. Exerc. Sport Sci. Rev. 39:2–3, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Faul, M., L. Xu, M. Wald, and V. Coronado. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Centers for Disease Control Prevention, National Center for Injury Prevention and Control, 2010.Google Scholar
  20. 20.
    Funk, J. R., S. M. Duma, S. J. Manoogian, and S. Rowson. Biomechanical risk estimates for mild traumatic brain injury. Annu. Proc. Assoc. Adv. Automot. Med. 51:343–361, 2007.PubMedGoogle Scholar
  21. 21.
    Gadd, C. Use of a weighted-impulse criterion for estimating injury hazard. In: Proc. 10th Stapp Car Crash Conf. Society of Automotive Engineers, 1966, pp. 164–174.Google Scholar
  22. 22.
    Galbraith, J. A., L. E. Thibault, and D. R. Matteson. Mechanical and electrical responses of the squid giant axon to simple elongation. J. Biomech. Eng. 115:13–22, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Gennarelli, T. A., J. H. Adams, and D. I. Graham. Acceleration induced head injury in the monkey. I. The model, its mechanical and physiological correlates. Acta Neuropathol. Suppl. 7:23–25, 1981.PubMedCrossRefGoogle Scholar
  24. 24.
    Gennarelli, T. A., L. E. Thibault, J. H. Adams, D. I. Graham, C. J. Thompson, and R. P. Marcincin. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12:564–574, 1982.PubMedCrossRefGoogle Scholar
  25. 25.
    Gennarelli, T. A., L. E. Thibault, and A. K. Ommaya. Pathophysiologic responses to rotational and translational accelerations of the head. Stapp Car Crash J. 16:296–308, 1972.Google Scholar
  26. 26.
    Greenwald, R. M., J. T. Gwin, J. J. Chu, and J. J. Crisco. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62:789–798, 2008; discussion 798.Google Scholar
  27. 27.
    Guskiewicz, K. M., J. P. Mihalik, V. Shankar, S. W. Marshall, D. H. Crowell, S. M. Oliaro, M. F. Ciocca, and D. N. Hooker. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery 61:1244–1252, 2007; discussion 1252–1253.Google Scholar
  28. 28.
    Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, 2001.PubMedGoogle Scholar
  29. 29.
    Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2007.PubMedGoogle Scholar
  30. 30.
    Hibbeler, R. Engineering Mechanics Dynamics (8th ed.). Upper Saddle River, NJ: Prentice-Hall, 1998.Google Scholar
  31. 31.
    Holbourn, H. H. C. Mechanics of head injuries. Lancet 2:438–441, 1943.CrossRefGoogle Scholar
  32. 32.
    Jorge, R. E., R. G. Robinson, S. V. Arndt, S. E. Starkstein, A. W. Forrester, and F. Geisler. Depression following traumatic brain injury: a 1 year longitudinal study. J. Affect. Disord. 27:233–243, 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Kleiven, S. Evaluation of head injury criteria using an FE model validated against experiments on localized brain motion, intra-cerebral acceleration, and intra-cranial pressure. Int. J. Crashworthiness 11:65–79, 2006.CrossRefGoogle Scholar
  34. 34.
    Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.PubMedGoogle Scholar
  35. 35.
    Kleiven, S., and W. N. Hardy. Correlation of an FE model of the human head with local brain motion—consequences for injury prediction. Stapp Car Crash J. 46:123–144, 2002.PubMedGoogle Scholar
  36. 36.
    Koh, J. O., J. D. Cassidy, and E. J. Watkinson. Incidence of concussion in contact sports: a systematic review of the evidence. Brain Inj. 17:901–917, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Lessley, D., J. Crandall, G. Shaw, R. Kent, and J. Funk. A Normalization Technique for Developing Corridors from Individual Subject Responses. SAE Technical Paper 2004-01-0288, 2004.Google Scholar
  38. 38.
    Margulies, S. S., L. E. Thibault, and T. A. Gennarelli. Physical model simulations of brain injury in the primate. J. Biomech. 23:823–836, 1990.PubMedCrossRefGoogle Scholar
  39. 39.
    Maxwell, W. L., J. T. Povlishock, and D. L. Graham. A mechanistic analysis of nondisruptive axonal injury: a review. J. Neurotrauma 14:419–440, 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Mertz, H. J., A. L. Irwin, and P. Prasad. Biomechanical and scaling bases for frontal and side impact injury assessment reference values. Stapp Car Crash J. 47:155–188, 2003.PubMedGoogle Scholar
  41. 41.
    Ommaya, A. K., W. Goldsmith, and L. Thibault. Biomechanics and neuropathology of adult and paediatric head injury. Br. J. Neurosurg. 16:220–242, 2002.PubMedCrossRefGoogle Scholar
  42. 42.
    Rowson, S., J. G. Beckwith, J. J. Chu, D. S. Leonard, R. M. Greenwald, and S. M. Duma. A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27:8–14, 2011.PubMedGoogle Scholar
  43. 43.
    Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131:061016, 2009.PubMedCrossRefGoogle Scholar
  44. 44.
    Rowson, S., and S. M. Duma. Development of the STAR evaluation system for football helmets: integrating player head impact exposure and risk of concussion. Ann. Biomed. Eng. 39:2130–2140, 2011.PubMedCrossRefGoogle Scholar
  45. 45.
    Rowson, S., S. M. Duma, J. G. Beckwith, J. J. Chu, R. M. Greenwald, J. J. Crisco, P. G. Brolinson, A. C. Duhaime, T. W. McAllister, and A. C. Maerlender. Rotational head kinematics in football impacts: an injury risk function for concussion. Ann. Biomed. Eng. 40(1):1–13, 2011.PubMedCrossRefGoogle Scholar
  46. 46.
    Rowson, S., M. W. Goforth, D. Dietter, P. G. Brolinson, and S. M. Duma. Correlating cumulative sub-concussive head impacts in football with player performance—biomed 2009. Biomed. Sci. Instrum. 45:113–118, 2009.PubMedGoogle Scholar
  47. 47.
    Ruan, J. S., T. Khalil, and A. I. King. Dynamic response of the human head to impact by three-dimensional finite element analysis. J. Biomech. Eng. 116:44–50, 1994.PubMedCrossRefGoogle Scholar
  48. 48.
    Schnebel, B., J. T. Gwin, S. Anderson, and R. Gatlin. In vivo study of head impacts in football: a comparison of National Collegiate Athletic Association Division I versus high school impacts. Neurosurgery 60:490–495, 2007; discussion 495–496.Google Scholar
  49. 49.
    Shain, K. S., M. L. Madigan, S. Rowson, J. Bisplinghoff, and S. M. Duma. Analysis of the ability of catcher’s masks to attenuate head accelerations on impact with a baseball. Clin. J. Sport Med. 20:422–427, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Takhounts, E. G., J. R. Crandall, and K. Darvish. On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47:14, 2003.Google Scholar
  51. 51.
    Takhounts, E. G., R. H. Eppinger, J. Q. Campbell, R. E. Tannous, E. D. Power, and L. S. Shook. On the development of the SIMon finite element head model. Stapp Car Crash J. 47:24, 2003.Google Scholar
  52. 52.
    Takhounts, E. G., V. Hasija, S. A. Ridella, S. Rowson, and S. M. Duma. Kinematic rotational brain injury criterion (BRIC). In: 22nd Enhanced Safety of Vehicles Conference Proceedings. Paper Number 11-0263, 2011.Google Scholar
  53. 53.
    Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.PubMedGoogle Scholar
  54. 54.
    Thibault, L. E., and T. A. Gennarelli. Biomechanics of Diffuse Brain Injuries. SAE International. Paper No. 856022, 1985.Google Scholar
  55. 55.
    Wade, A. L., J. L. Dye, C. R. Mohrle, and M. R. Galarneau. Head, face, and neck injuries during Operation Iraqi Freedom II: results from the US Navy-Marine Corps Combat Trauma Registry. J. Trauma 63:836–840, 2007.PubMedCrossRefGoogle Scholar
  56. 56.
    Wilde, E. A., Z. Chu, E. D. Bigler, J. V. Hunter, M. A. Fearing, G. Hanten, M. R. Newsome, R. S. Scheibel, X. Li, and H. S. Levin. Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J. Neurotrauma 23:1412–1426, 2006.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang, L., K. H. Yang, R. Dwarampudi, K. Omori, T. Li, K. Chang, W. N. Hardy, T. B. Khalil, and A. I. King. Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J. 45:369–394, 2001.PubMedGoogle Scholar
  58. 58.
    Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126:226–236, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Ashley A. Weaver
    • 1
  • Kerry A. Danelson
    • 1
  • Joel D. Stitzel
    • 1
  1. 1.Virginia Tech-Wake Forest University Center for Injury BiomechanicsWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations