Annals of Biomedical Engineering

, Volume 40, Issue 6, pp 1339–1355 | Cite as

Patterning Methods for Polymers in Cell and Tissue Engineering

  • Hong Nam Kim
  • Do-Hyun Kang
  • Min Sung Kim
  • Alex Jiao
  • Deok-Ho Kim
  • Kahp-Yang SuhEmail author


Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.


Patterning Biocompatible polymers Topography Rigidity Cell–biomaterial interface 


Cells and related terms


extracellular matrix


mesenchymal stem cells


human mesenchymal stem cells


human embryonic stem cells


human patellar tendon fibroblasts


phosphate buffered saline







polydimethyl siloxane


low-density polyethylene


fluorinated ethylene propylene


polyethylene terephthalate






polyurethane acrylate


Norland Optical Adhesive


polyethylene glycol


polyethylene glycol dimethacrylate


polyethylene glycol diacrylate


propylene glycol monomethyl ether acetate




lower critical solution temperature


poly(methyl methacrylate)




poly(lactic-co-glycolic acid)


polyglycolic acid














hyaluronic acid





nanoimprint lithography


replica molding


soft molding


capillary force lithography


block copolymer lithography



National Heart, Lung and Blood Institute


Food and Drug Administration


Material Safety Data Sheets



This work was supported by National Research Foundation Grant funded by the Korean Government (NRF-2011-220-D00035), WCU (World Class University) program (R31-2008-000-10083-0) and Basic Science Research Program (2010-0027955). D. H. Kim thanks Department of Bioengineering at the University of Washington for the new faculty startup fund. D. H. Kim is also supported by a Perkins Coie Award for Discovery. A. Jiao was supported by NIH training Grant T32-EB001650-07.


  1. 1.
    Abe, H., K. Hayashi, and M. Sato. Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Tokyo: Springer, 1996.Google Scholar
  2. 2.
    Agrawal, C. M., K. F. Haas, D. A. Leopold, and H. G. Clark. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.PubMedGoogle Scholar
  3. 3.
    Almany, L., and D. Seliktar. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477, 2005.PubMedGoogle Scholar
  4. 4.
    Armani, D., C. Liu, and N. Aluru. Re-configurable fluid circuits by PDMS elastomer micromachining. Presented at Micro Electro Mechanical Systems, 1999. MEMS ‘99. Twelfth IEEE International Conference on, 17–21 Jan 1999, pp. 222–227.Google Scholar
  5. 5.
    Ashby, M. F. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann, 2011.Google Scholar
  6. 6.
    ASM International. Materials and Coatings for Medical Devices: Cardiovascular. Materials Park, OH: ASM International, 2009.Google Scholar
  7. 7.
    Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8:451–465, 2007.PubMedGoogle Scholar
  8. 8.
    Beaupre, G. S., S. S. Stevens, and D. R. Carter. Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J. Rehabil. Res. Dev. 37:145–151, 2000.PubMedGoogle Scholar
  9. 9.
    Belanger, M. C., and Y. Marois. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J. Biomed. Mater. Res. 58:467–477, 2001.PubMedGoogle Scholar
  10. 10.
    Bikram, M., C. Fouletier-Dilling, J. A. Hipp, F. Gannon, A. R. Davis, E. A. Olmsted-Davis, and J. L. West. Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells. Ann. Biomed. Eng. 35:796–807, 2007.PubMedGoogle Scholar
  11. 11.
    Bratlie, K. M., T. T. Dang, S. Lyle, M. Nahrendorf, R. Weissleder, R. Langer, and D. G. Anderson. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models. PLoS ONE 5:e10032, 2010.PubMedGoogle Scholar
  12. 12.
    Camelliti, P., T. K. Borg, and P. Kohl. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51, 2005.PubMedGoogle Scholar
  13. 13.
    Campbell, B. H., W. W. Clark, and J. H. C. Wang. A multi-station culture force monitor system to study cellular contractility. J. Biomech. 36:137–140, 2003.PubMedGoogle Scholar
  14. 14.
    Chandra, D., J. A. Taylor, and S. Yang. Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents. Soft Matter 4:979–984, 2008.Google Scholar
  15. 15.
    Chen, C. C., P. C. H. Hsieh, G. M. Wang, W. C. Chen, and M. L. Yeh. The influence of surface morphology and rigidity of the substrata on cell motility. Mater. Lett. 63:1872–1875, 2009.Google Scholar
  16. 16.
    Choi, S.-J., H. N. Kim, W. G. Bae, and K.-Y. Suh. Modulus- and surface energy-tunable ultraviolet-curable polyurethane acrylate: properties and applications. J. Mater. Chem. 21:14325–14335, 2011.Google Scholar
  17. 17.
    Choi, K. M., and J. A. Rogers. A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 125:4060–4061, 2003.PubMedGoogle Scholar
  18. 18.
    Choi, S. J., P. J. Yoo, S. J. Baek, T. W. Kim, and H. H. Lee. An ultraviolet-curable mold for sub-100-nm lithography. J. Am. Chem. Soc. 126:7744–7745, 2004.PubMedGoogle Scholar
  19. 19.
    Collier, J. H., J. P. Camp, T. W. Hudson, and C. E. Schmidt. Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50:574–584, 2000.PubMedGoogle Scholar
  20. 20.
    Cooperstein, M. A., and H. E. Canavan. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. Langmuir 26:7695–7707, 2010.PubMedGoogle Scholar
  21. 21.
    Cui, X. Y., and D. C. Martin. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B-Chem. 89:92–102, 2003.Google Scholar
  22. 22.
    Dal Zilio, S., K. Tvingstedt, O. Inganas, and M. Tormen. Fabrication of a light trapping system for organic solar cells. Microelectron. Eng. 86:1150–1154, 2009.Google Scholar
  23. 23.
    Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6:997–1003, 2007.PubMedGoogle Scholar
  24. 24.
    Dolatshahi-Pirouz, A., M. Nikkhah, K. Kolind, M. R. Dokmeci, and A. Khademhosseini. Micro- and nanoengineering approaches to control stem cell–biomaterial interactions. J. Funct. Biomater. 2:88–106, 2011.Google Scholar
  25. 25.
    Dong, B., N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. M. S. Torres, and L. F. Chi. Fabrication of high-density large-area conducting-polymer nanostructures. Adv. Funct. Mater. 16:1937–1942, 2006.Google Scholar
  26. 26.
    Emelianov, S. Y., R. Q. Erkamp, M. A. Lubinski, A. R. Skovoroda, and M. O’Donnell. Non-linear tissue elasticity: adaptive elasticity imaging for large deformations. Presented at Ultrasonics Symposium, 1998. Proceedings, 1998 IEEE, Vol. 1752, 1998, pp. 1753–1756.Google Scholar
  27. 27.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.PubMedGoogle Scholar
  28. 28.
    Fisher, O. Z., A. Khademhosseini, R. Langer, and N. A. Peppas. Bioinspired materials for controlling stem cell fate. Accounts Chem. Res. 43:419–428, 2010.Google Scholar
  29. 29.
    Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.PubMedGoogle Scholar
  30. 30.
    Freed, L. E., G. Vunjaknovakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12:689–693, 1994.Google Scholar
  31. 31.
    Fu, J. P., Y. K. Wang, M. T. Yang, R. A. Desai, X. A. Yu, Z. J. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–739, 2010.PubMedGoogle Scholar
  32. 32.
    Gajendran, P., and R. Saraswathi. Polyaniline–carbon nanotube composites. Pure Appl. Chem. 80:2377–2395, 2008.Google Scholar
  33. 33.
    Gates, B. D., Q. B. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides. Unconventional nanofabrication. Annu. Rev. Mater. Res. 34:339–372, 2004.Google Scholar
  34. 34.
    Gefen, A., and S. S. Margulies. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37:1339–1352, 2004.PubMedGoogle Scholar
  35. 35.
    Genzer, J., and J. Groenewold. Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2:310–323, 2006.Google Scholar
  36. 36.
    Ghista, D., W. Vayo, and H. Sandler. Elastic modulus of the human intact left ventricle—determination and physiological interpretation. Med. Biol. Eng. Comput. 13:151–161, 1975.Google Scholar
  37. 37.
    Gilmore, K. J., M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. Kapsa, and G. G. Wallace. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 30:5292–5304, 2009.PubMedGoogle Scholar
  38. 38.
    Goldenberg, L. M., Y. Gritsai, O. Sakhno, O. Kulikovska, and J. Stumpe. All-optical fabrication of 2D and 3D photonic structures using a single polymer phase mask. J. Opt. 12:015103, 2010.Google Scholar
  39. 39.
    Gordan, O. D., B. N. J. Persson, C. M. Cesa, D. Mayer, B. Hoffmann, S. Dieluweit, and R. Merkel. On pattern transfer in replica molding. Langmuir 24:6636–6639, 2008.PubMedGoogle Scholar
  40. 40.
    Green, R. A., N. H. Lovell, G. G. Wallace, and L. A. Poole-Warren. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399, 2008.PubMedGoogle Scholar
  41. 41.
    Greiner, A., and J. H. Wendorff. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Edit. 46:5670–5703, 2007.Google Scholar
  42. 42.
    Gunatillake, P. A., and R. Adhikari. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 5:1–16, 2003.PubMedGoogle Scholar
  43. 43.
    Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19:495–513, 2007.Google Scholar
  44. 44.
    Hahn, M. S., L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.PubMedGoogle Scholar
  45. 45.
    Hall, T. J., M. Bilgen, M. F. Insana, and T. A. Krouskop. Phantom materials for elastography. IEEE Trans. Ultrason. Ferr. 44:1355–1365, 1997.Google Scholar
  46. 46.
    Heo, Y. J., H. Shibata, T. Okitsu, T. Kawanishi, and S. Takeuchi. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. USA 108:13399–13403, 2011.PubMedGoogle Scholar
  47. 47.
    Hirose, M., O. H. Kwon, M. Yamato, A. Kikuchi, and T. Okano. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1:377–381, 2000.PubMedGoogle Scholar
  48. 48.
    Hsiue, G. H., R. W. Chang, C. H. Wang, and S. H. Lee. Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 24:2423–2430, 2003.PubMedGoogle Scholar
  49. 49.
    Huang, C. Y., B. Dong, N. Lu, B. J. Yang, L. G. Gao, L. Tian, D. P. Qi, Q. Wu, and L. F. Chi. A strategy for patterning conducting polymers using nanoimprint lithography and isotropic plasma etching. Small 5:583–586, 2009.PubMedGoogle Scholar
  50. 50.
    Huh, D., K. L. Mills, X. Y. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 6:424–428, 2007.PubMedGoogle Scholar
  51. 51.
    Idota, N., T. Tsukahara, K. Sato, T. Okano, and T. Kitamori. The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30:2095–2101, 2009.PubMedGoogle Scholar
  52. 52.
    Im, S. G., P. J. Yoo, P. T. Hammond, and K. K. Gleason. Grafted conducting polymer films for nano-patterning onto various organic and inorganic substrates by oxidative chemical vapor deposition. Adv. Mater. 19:2863–2867, 2007.Google Scholar
  53. 53.
    Ishiyama, C., and Y. Higo. Effects of humidity on Young’s modulus in poly(methyl methacrylate). J. Polym. Sci. Polym. Phys. 40:460–465, 2002.Google Scholar
  54. 54.
    Jang, J. H., D. Dendukuri, T. A. Hatton, E. L. Thomas, and P. S. Doyle. A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew. Chem. Int. Ed. 46:9027–9031, 2007.Google Scholar
  55. 55.
    Jang, K. J., M. S. Kim, D. Feltrin, N. L. Jeon, K. Y. Suh, and O. Pertz. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS ONE 5:e15966, 2010.PubMedGoogle Scholar
  56. 56.
    Janmey, P. A., and C. A. McCulloch. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34, 2007.PubMedGoogle Scholar
  57. 57.
    Jeong, H. E., J. K. Lee, H. N. Kim, S. H. Moon, and K. Y. Suh. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl. Acad. Sci. USA 106:5639–5644, 2009.PubMedGoogle Scholar
  58. 58.
    Jeong, H. E., and K. Y. Suh. On the role of oxygen in fabricating microfluidic channels with ultraviolet curable materials. Lab Chip 8:1787–1792, 2008.PubMedGoogle Scholar
  59. 59.
    Jones, B. F., M. E. Wall, R. L. Carroll, S. Washburn, and A. J. Banes. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J. Biomech. 38:1653–1664, 2005.PubMedGoogle Scholar
  60. 60.
    Kadler, K. E., D. J. S. Hulmes, Y. Hojima, and D. J. Prockop. Assembly of type-I collagen fibrils denovo by the specific enzymatic cleavage of pC collagen—the fibrils formed at about 37-degrees-C are similar in diameter, roundness, and apparent flexibility to the collagen fibrils seen in connective-tissue. Ann. N. Y. Acad. Sci. 580:214–224, 1990.PubMedGoogle Scholar
  61. 61.
    Khademhosseini, A., S. Jon, K. Y. Suh, T. N. T. Tran, G. Eng, J. Yeh, J. Seong, and R. Langer. Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures. Adv. Mater. 15:1995–2000, 2003.Google Scholar
  62. 62.
    Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl Acad. Sci. USA 103:2480–2487, 2006.PubMedGoogle Scholar
  63. 63.
    Kim, D. H., K. Han, K. Gupta, K. W. Kwon, K. Y. Suh, and A. Levchenko. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30:5433–5444, 2009.PubMedGoogle Scholar
  64. 64.
    Kim, P., H. E. Jeong, A. Khademhosseini, and K. Y. Suh. Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing. Lab Chip 6:1432–1437, 2006.PubMedGoogle Scholar
  65. 65.
    Kim, P., H. Y. Kim, J. K. Kim, G. Reiter, and K. Y. Suh. Multi-curvature liquid meniscus in a nanochannel: evidence of interplay between intermolecular and surface forces. Lab Chip 9:3255–3260, 2009.PubMedGoogle Scholar
  66. 66.
    Kim, P., R. Kwak, S. H. Lee, and K. Y. Suh. Solvent-assisted decal transfer lithography by oxygen-plasma bonding and anisotropic swelling. Adv. Mater. 22:2426–2429, 2010.PubMedGoogle Scholar
  67. 67.
    Kim, Y. S., H. H. Lee, and P. T. Hammond. High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers. Nanotechnology 14:1140–1144, 2003.Google Scholar
  68. 68.
    Kim, D. H., H. Lee, Y. K. Lee, J. M. Nam, and A. Levchenko. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 22:4551–4566, 2010.PubMedGoogle Scholar
  69. 69.
    Kim, H. N., S. H. Lee, and K. Y. Suh. Controlled mechanical fracture for fabricating microchannels with various size gradients. Lab Chip 11:717–722, 2011.PubMedGoogle Scholar
  70. 70.
    Kim, D. H., E. A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K. Y. Suh, L. Tung, and A. Levchenko. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107:565–570, 2010.PubMedGoogle Scholar
  71. 71.
    Kim, D. H., C. H. Seo, K. Han, K. W. Kwon, A. Levchenko, and K. Y. Suh. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv. Funct. Mater. 19:1579–1586, 2009.PubMedGoogle Scholar
  72. 72.
    Kim, K.-H., N.-Y. Song, B.-K. Choo, D. Pribat, J. Jang, and K.-C. Park. Mechanical characteristics of the hard-polydimethylsiloxane for smart lithography. Presented at EKC2008 Proceedings of the EU-Korea Conference on Science and Technology, 2008, pp. 229–237.Google Scholar
  73. 73.
    Kim, D. H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11:203–233, 2009.PubMedGoogle Scholar
  74. 74.
    Kotov, N. A., J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini. Nanomaterials for neural interfaces. Adv. Mater. 21:3970–4004, 2009.Google Scholar
  75. 75.
    Kotwal, A., and C. E. Schmidt. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055–1064, 2001.PubMedGoogle Scholar
  76. 76.
    Krouskop, T. A., T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall. Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20:260–274, 1998.PubMedGoogle Scholar
  77. 77.
    Kwak, M. K., H. E. Jeong, and K. Y. Suh. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 23:3949–3953, 2011.PubMedGoogle Scholar
  78. 78.
    Kwon, K. W., S. S. Choi, S. H. Lee, B. Kim, S. N. Lee, M. C. Park, P. Kim, S. Y. Hwang, and K. Y. Suh. Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461–1468, 2007.PubMedGoogle Scholar
  79. 79.
    Lang, U., N. Naujoks, and J. Dual. Mechanical characterization of PEDOT:PSS thin films. Synth. Met. 159:473–479, 2009.Google Scholar
  80. 80.
    Leach, J. B., X. Q. Brown, J. G. Jacot, P. A. DiMilla, and J. Y. Wong. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26–34, 2007.PubMedGoogle Scholar
  81. 81.
    Lee, J. Y., C. A. Bashur, A. S. Goldstein, and C. E. Schmidt. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335, 2009.PubMedGoogle Scholar
  82. 82.
    Lee, H., R. V. Bellamkonda, W. Sun, and M. E. Levenston. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2:81–89, 2005.PubMedGoogle Scholar
  83. 83.
    Lee, S. H., H. E. Jeong, M. C. Park, J. Y. Hur, H. S. Cho, S. H. Park, and K. Y. Suh. Fabrication of hollow polymeric microstructures for shear-protecting cell containers. Adv. Mater. 20:788–792, 2008.Google Scholar
  84. 84.
    Lee, S. H., D. H. Kang, H. N. Kim, and K. Y. Suh. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications. Lab Chip 10:3300–3306, 2010.PubMedGoogle Scholar
  85. 85.
    Lee, S. H., H. N. Kim, R. K. Kwak, and K. Y. Suh. Effects of mold rising angle and polymer concentration in solvent-assisted molding. Langmuir 25:12024–12029, 2009.PubMedGoogle Scholar
  86. 86.
    Lee, M. R., K. W. Kwon, H. Jung, H. N. Kim, K. Y. Suh, K. Kim, and K. S. Kim. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31:4360–4366, 2010.PubMedGoogle Scholar
  87. 87.
    Lee, J. Y., S. S. Shah, J. Yan, M. C. Howland, A. N. Parikh, T. R. Pan, and A. Revzin. Integrating sensing hydrogel microstructures into micropatterned hepatocellular cocultures. Langmuir 25:3880–3886, 2009.PubMedGoogle Scholar
  88. 88.
    Legant, W. R., J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7:969–971, 2010.PubMedGoogle Scholar
  89. 89.
    Li, Z. W., Y. N. Gu, L. Wang, H. X. Ge, W. Wu, Q. F. Xia, C. S. Yuan, Y. Chen, B. Cui, and R. S. Williams. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 9:2306–2310, 2009.PubMedGoogle Scholar
  90. 90.
    Li, M. Y., Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715, 2006.PubMedGoogle Scholar
  91. 91.
    Li, S. L., C. W. Macosko, and H. S. White. Electrochemical processing of conducting polymer fibers. Science 259:957–960, 1993.Google Scholar
  92. 92.
    Li, G., V. Shrotriya, Y. Yao, J. S. Huang, and Y. Yang. Manipulating regioregular poly(3-hexylthiophene): [6,6]-phenyl-C-61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells. J. Mater. Chem. 17:3126–3140, 2007.Google Scholar
  93. 93.
    Li, Z. Z., G. G. Yang, M. Khan, D. Stone, S. L. Y. Woo, and J. H. C. Wang. Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am. J. Sports Med. 32:435–440, 2004.PubMedGoogle Scholar
  94. 94.
    Li, P. C., W. C. Yeh, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and P. H. Lee. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28:467–474, 2002.PubMedGoogle Scholar
  95. 95.
    Liliensiek, S. J., J. A. Wood, J. A. Yong, R. Auerbach, P. F. Nealey, and C. J. Murphy. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 31:5418–5426, 2010.PubMedGoogle Scholar
  96. 96.
    Lim, S. H., and H. Q. Mao. Electrospun scaffolds for stem cell engineering. Adv. Drug Deliver. Rev. 61:1084–1096, 2009.Google Scholar
  97. 97.
    Liu, W. E., M. L. Ma, K. M. Bratlie, T. T. Dang, R. Langer, and D. G. Anderson. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32:1796–1801, 2011.PubMedGoogle Scholar
  98. 98.
    Lloyd, A. W., R. G. A. Faragher, and S. P. Denyer. Ocular biomaterials and implants. Biomaterials 22:769–785, 2001.PubMedGoogle Scholar
  99. 99.
    Luna, J. I., J. Ciriza, M. E. Garcia-Ojeda, M. Kong, A. Herren, D. K. Lieu, R. A. Li, C. C. Fowlkes, M. Khine, and K. E. McCloskey. Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells. Tissue Eng. Part C Methods 17:579–588, 2011.PubMedGoogle Scholar
  100. 100.
    Marencic, A. P., and R. A. Register. Controlling order in block copolymer thin films for nanopatterning applications. Annu. Rev. Chem. Biomol. 1:277–297, 2010.Google Scholar
  101. 101.
    Markovitz-Bishitz, Y., Y. Tauber, E. Afrimzon, N. Zurgil, M. Sobolev, Y. Shafran, A. Deutsch, S. Howitz, and M. Deutsch. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Biomaterials 31:8436–8444, 2010.PubMedGoogle Scholar
  102. 102.
    Mathews, M. B. Connective tissue. Macromolecular structure and evolution. Mol. Biol. Biochem. Biophys. 19:1–318, 1975.PubMedGoogle Scholar
  103. 103.
    Matsumaru, Y., A. Hyodo, T. Nose, S. Ito, T. Hirano, and S. Ohashi. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J. Biomater. Sci. Polym. Edn. 7:795–804, 1996.Google Scholar
  104. 104.
    Meng, J., H. Kong, Z. Z. Han, C. Y. Wang, G. J. Zhu, S. S. Xie, and H. Y. Xu. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J. Biomed. Mater. Res. A 88A:105–116, 2009.Google Scholar
  105. 105.
    Mente, P. L., and J. L. Lewis. Experimental-method for the measurement of the elastic-modulus of trabecular bone tissue. J. Orthop. Res. 7:456–461, 1989.PubMedGoogle Scholar
  106. 106.
    Michel, B., and H. Schmid. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042–3049, 2000.Google Scholar
  107. 107.
    Middleton, J. C., and A. J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346, 2000.PubMedGoogle Scholar
  108. 108.
    Mih, J. D., and D. J. Tschumperlin. Lung fibroblast behavior is tuned by substrate stiffness. Proc. Am. Thorac. Soc. 5:364–365, 2008.Google Scholar
  109. 109.
    Mills, K. L., D. Huh, S. Takayama, and M. D. Thouless. Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking. Lab Chip 10:1627–1630, 2010.PubMedGoogle Scholar
  110. 110.
    Mills, K. L., X. Y. Zhu, S. C. Takayama, and M. D. Thouless. The mechanical properties of a surface-modified layer on polydimethylsiloxane. J. Mater. Res. 23:37–48, 2008.PubMedGoogle Scholar
  111. 111.
    Mohr, J. C., J. J. de Pablo, and S. P. Palecek. 3-D microwell culture of human embryonic stem cells. Biomaterials 27:6032–6042, 2006.PubMedGoogle Scholar
  112. 112.
    Mohr, J. C., J. H. Zhang, S. M. Azarin, A. G. Soerens, J. J. de Pablo, J. A. Thomson, G. E. Lyons, S. P. Palecek, and T. J. Kamp. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31:1885–1893, 2010.PubMedGoogle Scholar
  113. 113.
    Murray, P., G. M. Spinks, G. G. Wallace, and R. P. Burford. In situ mechanical properties of tosylate doped (pTS) polypyrrole. Synth. Met. 84:847–848, 1997.Google Scholar
  114. 114.
    Nahum, A. M., and J. Melvin. Accidental Injury: Biomechanics and Prevention. New York: Springer, 2002.Google Scholar
  115. 115.
    Nemir, S., and J. L. West. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38:2–20, 2010.PubMedGoogle Scholar
  116. 116.
    Norland Products Corporation Database.
  117. 117.
    Ochsner, M., M. Textor, V. Vogel, and M. L. Smith. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PLoS ONE 5:e9445, 2010.PubMedGoogle Scholar
  118. 118.
    Odom, T. W., J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320, 2002.Google Scholar
  119. 119.
    Ohya, S., Y. Nakayama, and T. Matsuda. In vivo evaluation of poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as an in situ-formable scaffold. J. Artif. Organs 7:181–186, 2004.PubMedGoogle Scholar
  120. 120.
    Ommaya, A. K. Mechanical properties of tissues of the nervous system. J. Biomech. 1:127–138, 1968.PubMedGoogle Scholar
  121. 121.
    Park, M. C., J. Y. Hur, H. S. Cho, S. H. Park, and K. Y. Suh. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:79–86, 2011.PubMedGoogle Scholar
  122. 122.
    Park, M. C., J. Y. Hur, K. W. Kwon, S. H. Park, and K. Y. Suh. Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus. Lab Chip 6:988–994, 2006.PubMedGoogle Scholar
  123. 123.
    Park, J., H. N. Kim, D. H. Kim, A. Levchenko, and K. Y. Suh. Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology. IEEE Trans. Nanobiosci., 2011. doi: 10.1109/TNB.2011.2165728.
  124. 124.
    Pascual, M., R. D. Swinford, and N. TolkoffRubin. Acute renal failure: role of dialysis membrane biocompatibility. Annu. Rev. Med. 48:467–476, 1997.PubMedGoogle Scholar
  125. 125.
    Patel, S., K. Kurpinski, R. Quigley, H. F. Gao, B. S. Hsiao, M. M. Poo, and S. Li. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 7:2122–2128, 2007.PubMedGoogle Scholar
  126. 126.
    Pedrotty, D. M., J. Koh, B. H. Davis, D. A. Taylor, P. Wolf, and L. E. Niklason. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am. J. Physiol. Heart C 288:H1620–H1626, 2005.Google Scholar
  127. 127.
    Peng, R., X. Yao, and J. Ding. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 32:8048–8057, 2011.PubMedGoogle Scholar
  128. 128.
    Piruska, A., I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354, 2005.PubMedGoogle Scholar
  129. 129.
    Qin, D., Y. N. Xia, and G. M. Whitesides. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5:491–502, 2010.PubMedGoogle Scholar
  130. 130.
    Radmacher, M., and J. Domke. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325, 1998.Google Scholar
  131. 131.
    Razal, J. M., M. Kita, A. F. Quigley, E. Kennedy, S. E. Moulton, R. M. I. Kapsa, G. M. Clark, and C. G. Wallace. Wet-spun biodegradable fibers on conducting platforms: novel architectures for muscle regeneration. Adv. Funct. Mater. 19:3381–3388, 2009.Google Scholar
  132. 132.
    Revzin, A., R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447, 2001.PubMedGoogle Scholar
  133. 133.
    Rho, J. Y., R. B. Ashman, and C. H. Turner. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26:111–119, 1993.PubMedGoogle Scholar
  134. 134.
    Rogers, J. A., and H. H. Lee. Unconventional Nanopatterning Techniques and Applications. Hoboken, NJ: Wiley, 2009.Google Scholar
  135. 135.
    Saha, K., A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.PubMedGoogle Scholar
  136. 136.
    Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.PubMedGoogle Scholar
  137. 137.
    Sanghvi, A. B., K. P. H. Miller, A. M. Belcher, and C. E. Schmidt. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat. Mater. 4:496–502, 2005.PubMedGoogle Scholar
  138. 138.
    Schiffman, J. D., and C. L. Schauer. A review: electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48:317–352, 2008.Google Scholar
  139. 139.
    Schild, H. G. Poly(N-isopropylacrylamide)—experiment, theory and application. Prog. Polym. Sci. 17:163–249, 1992.Google Scholar
  140. 140.
    Schmidt, C. E., V. R. Shastri, J. P. Vacanti, and R. Langer. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl Acad. Sci. USA 94:8948–8953, 1997.PubMedGoogle Scholar
  141. 141.
    Shimizu, T., M. Yamato, T. Akutsu, T. Shibata, Y. Isoi, A. Kikuchi, M. Umezu, and T. Okano. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J. Biomed. Mater. Res. 60:110–117, 2002.PubMedGoogle Scholar
  142. 142.
    Silva, J. R., H. Pan, D. Wu, A. Nekouzadeh, K. F. Decker, J. M. Cui, N. A. Baker, D. Sept, and Y. Rudy. A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc. Natl Acad. Sci. USA 106:11102–11106, 2009.PubMedGoogle Scholar
  143. 143.
    Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective-tissue—relationship between hierarchical structures and mechanical-properties. J. Long-Term Eff. Med. 2:165–198, 1992.Google Scholar
  144. 144.
    Sitti, M., and R. S. Fearing. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 17:1055–1073, 2003.Google Scholar
  145. 145.
    Sochol, R. D., A. T. Higa, R. R. R. Janairo, S. Li, and L. W. Lin. Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7:4606–4609, 2011.Google Scholar
  146. 146.
    Stevens, M. P. Polymer Chemistry: An Introduction. New York: Oxford University Press, 1999.Google Scholar
  147. 147.
    Suh, K. Y., Y. S. Kim, and H. H. Lee. Capillary force lithography. Adv. Mater. 13:1386–1389, 2001.Google Scholar
  148. 148.
    Suh, K. Y., M. C. Park, and P. Kim. Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv. Funct. Mater. 19:2699–2712, 2009.Google Scholar
  149. 149.
    Sung, J. H., J. J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392, 2011.PubMedGoogle Scholar
  150. 150.
    Tabesh, H., G. Amoabediny, N. S. Nik, M. Heydari, M. Yosefifard, S. O. R. Siadat, and K. Mottaghy. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem. Int. 54:73–83, 2009.PubMedGoogle Scholar
  151. 151.
    Takigawa, T., T. Yamawaki, K. Takahashi, and T. Masuda. Change in Young’s modulus of poly(N-isopropylacrylamide) gels by volume phase transition. Polym. Gels Netw. 5:585–589, 1997.Google Scholar
  152. 152.
    Taylor, Z., and K. Miller. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37:1263–1269, 2004.PubMedGoogle Scholar
  153. 153.
    Tekin, H., M. Anaya, M. D. Brigham, C. Nauman, R. Langer, and A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10:2411–2418, 2010.PubMedGoogle Scholar
  154. 154.
    Tekin, H., T. Tsinman, J. G. Sanchez, B. J. Jones, G. Camci-Unal, J. W. Nichol, R. Langer, and A. Khademhosseini. Responsive micromolds for sequential patterning of hydrogel microstructures. J. Am. Chem. Soc. 133:12944–12947, 2011.PubMedGoogle Scholar
  155. 155.
    Teo, W. E., and S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106, 2006.PubMedGoogle Scholar
  156. 156.
    Thubrikar, M., W. C. Piepgrass, L. P. Bosher, and S. P. Nolan. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 47:792–800, 1980.PubMedGoogle Scholar
  157. 157.
    Tsai, I. Y., M. Kimura, and T. P. Russell. Fabrication of a gradient heterogeneous surface using homopolymers and diblock copolymers. Langmuir 20:5952–5957, 2004.PubMedGoogle Scholar
  158. 158.
    Tsai, I. Y., M. Kimura, R. Stockton, J. A. Green, R. Puig, B. Jacobson, and T. P. Russell. Fibroblast adhesion to micro- and nano-heterogeneous topography using diblock copolymers and homopolymers. J. Biomed. Mater. Res. A 71A:462–469, 2004.Google Scholar
  159. 159.
    Tzvetkova-Chevolleau, T., A. Stephanou, D. Fuard, J. Ohayon, P. Schiavone, and P. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551, 2008.PubMedGoogle Scholar
  160. 160.
    Vasita, R., and D. S. Katti. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 1:15–30, 2006.Google Scholar
  161. 161.
    Veronese, F. M., and G. Pasut. PEGylation, successful approach to drug delivery. Drug Discov. Today 10:1451–1458, 2005.PubMedGoogle Scholar
  162. 162.
    Vihola, H., A. Laukkanen, L. Valtola, H. Tenhu, and J. Hirvonen. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064, 2005.PubMedGoogle Scholar
  163. 163.
    Wang, H., P. L. Prendiville, P. J. McDonnell, and W. V. Chang. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J. Biomech. 29:1633–1636, 1996.PubMedGoogle Scholar
  164. 164.
    Wang, J. H. C., G. G. Yang, and Z. Z. Li. Controlling cell responses to cyclic mechanical stretching. Ann. Biomed. Eng. 33:337–342, 2005.PubMedGoogle Scholar
  165. 165.
    Wen-Chun, Y., J. Yung-Ming, H. Hey-Chi, K. Po-Ling, L. Meng-Lin, Y. Pei-Ming, L. Po Huang, and L. Pai-Chi. Young’s modulus measurements of human liver and correlation with pathological findings. Presented at Ultrasonics Symposium, 2001 IEEE, Vol. 1232, 2001, pp. 1233–1236.Google Scholar
  166. 166.
    Wu, W., W. M. Tong, J. Bartman, Y. F. Chen, R. Walmsley, Z. N. Yu, Q. F. Xia, I. Park, C. Picciotto, J. Gao, S. Y. Wang, D. Morecroft, J. Yang, K. K. Berggren, and R. S. Williams. Sub-10 nm nanoimprint lithography by wafer bowing. Nano Lett. 8:3865–3869, 2008.PubMedGoogle Scholar
  167. 167.
    Xia, Y. N., and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.Google Scholar
  168. 168.
    Yamato, M., C. Konno, M. Utsumi, A. Kikuchi, and T. Okano. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23:561–567, 2002.PubMedGoogle Scholar
  169. 169.
    Yamato, M., O. H. Kwon, M. Hirose, A. Kikuchi, and T. Okano. Novel patterned cell coculture utilizing thermally responsive grafted polymer surfaces. J. Biomed. Mater. Res. 55:137–140, 2001.PubMedGoogle Scholar
  170. 170.
    Yang, S., K. Khare, and P. C. Lin. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 20:2550–2564, 2010.Google Scholar
  171. 171.
    Yang, Y., and K. W. Leong. Nanoscale surfacing for regenerative medicine. Wires Nanomed. Nanobiotechnol. 2:478–495, 2010.Google Scholar
  172. 172.
    Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.PubMedGoogle Scholar
  173. 173.
    Yim, E. K. F., E. M. Darling, K. Kulangara, F. Guilak, and K. W. Leong. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31:1299–1306, 2010.PubMedGoogle Scholar
  174. 174.
    Yoo, P. J., S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee. Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing. Chem. Mater. 16:5000–5005, 2004.Google Scholar
  175. 175.
    You, M. H., M. K. Kwak, D. H. Kim, K. Kim, A. Levchenko, D. Y. Kim, and K. Y. Suh. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 11:1856–1862, 2010.PubMedGoogle Scholar
  176. 176.
    Young, R. J. Introduction to Polymers. London: Chapman & Hall, 1981.Google Scholar
  177. 177.
    Zhu, X. Y., K. L. Mills, P. R. Peters, J. H. Bahng, E. H. Liu, J. Shim, K. Naruse, M. E. Csete, M. D. Thouless, and S. Takayama. Fabrication of reconfigurable protein matrices by cracking. Nat. Mater. 4:403–406, 2005.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Hong Nam Kim
    • 1
  • Do-Hyun Kang
    • 1
  • Min Sung Kim
    • 1
  • Alex Jiao
    • 2
  • Deok-Ho Kim
    • 2
  • Kahp-Yang Suh
    • 1
    Email author
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations