Annals of Biomedical Engineering

, Volume 40, Issue 7, pp 1419–1433 | Cite as

Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures

  • Lian Tian
  • Steven R. Lammers
  • Philip H. Kao
  • Joseph A. Albietz
  • Kurt R. Stenmark
  • H. Jerry Qi
  • Robin Shandas
  • Kendall S. Hunter


Understanding the mechanical behavior of proximal pulmonary arteries (PAs) is crucial to evaluating pulmonary vascular function and right ventricular afterload. Early and current efforts focus on these arteries’ histological changes, in vivo pressure–diameter behavior and mechanical properties under in vitro mechanical testing. However, the in vivo stretch and stress states remain poorly characterized. To further understand the mechanical behavior of the proximal PAs under physiological conditions, this study computed the residual stretch and the in vivo circumferential stretch state in the main pulmonary arteries in both control and hypertensive calves by using in vitro and in vivo artery geometry data, and modeled the impact of residual stretch and arterial remodeling on the in vivo circumferential stretch distribution and collagen engagement in the main pulmonary artery. We found that the in vivo circumferential stretch distribution in both groups was nonuniform across the vessel wall with the largest stretch at the outer wall, suggesting that collagen at the outer wall would engage first. It was also found that the circumferential stretch was more uniform in the hypertensive group, partially due to arterial remodeling that occurred during their hypoxic treatment, and that their onset of collagen engagement occurred at a higher pressure. It is concluded that the residual stretch and arterial remodeling have strong impact on the in vivo stretch state and the collagen engagement and thus the mechanical behavior of the main pulmonary artery in calves.


Residual stretch Arterial remodeling Stretch distribution Collagen engagement 


  1. 1.
    Burton, A. C. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34:619–642, 1954.PubMedGoogle Scholar
  2. 2.
    Cacho, F., P. J. Elbischger, J. F. Rodríguez, M. Doblaré, and G. A. Holzapfel. A constitutive model for fibrous tissues considering collagen fiber crimp. Int. J. Nonlinear Mech. 42:391–402, 2007.CrossRefGoogle Scholar
  3. 3.
    Canham, P. B., H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen. Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovasc. Res. 23:973–982, 1989.PubMedCrossRefGoogle Scholar
  4. 4.
    Carew, T. E., R. N. Vaishnav, and D. J. Patel. Compressibility of the arterial wall. Circ. Res. 23:61–68, 1968.PubMedCrossRefGoogle Scholar
  5. 5.
    Chuong, C. J., and Y. C. Fung. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Clark, J. M., and S. Glagov. Transmural organization of the arterial media. The lamellar unit revisited. Arterioscler. Thromb. Vasc. Biol. 5:19–34, 1985.CrossRefGoogle Scholar
  8. 8.
    Dingemans, K. P., P. Teeling, J. H. Lagendijk, and A. E. Becker. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258:1–14, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Durmowicz, A. G., and K. R. Stenmark. Mechanisms of structural remodeling in chronic pulmonary hypertension. Pediatr. Rev. 20:91–102, 1999.Google Scholar
  10. 10.
    Dyer, K. L., C. J. Lanning, B. B. Das, D. D. Ivy, and R. Shandas. Development and validation of a non-invasive color M-mode tissue Doppler imaging technique for measuring pulmonary artery compliance: in vitro and clinical studies. J. Am. Soc. Echocardiogr. 19:403–412, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Elbischger, P. H., H. Bischof, P. Regitnig, and G. A. Holzapfel. Automatic analysis of collagen fiber orientation in the outermost layer of human arteries. Pattern Anal. Appl. 7:269–284, 2004.Google Scholar
  12. 12.
    Finlay, H. M., L. McCullough, and P. B. Canham. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32:301–312, 1995.PubMedGoogle Scholar
  13. 13.
    Fung, Y. C. Biodynamics: Circulation. New York: Springer, 1984.Google Scholar
  14. 14.
    Fung, Y. C. What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19:237–249, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Fung, Y. C., and S. Q. Liu. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340–1349, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Fung, Y. C., and S. Q. Liu. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70:2455–2470, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Fung, Y. C., and S. Q. Liu. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am. J. Physiol. Heart Circ. Physiol. 262:H544–H552, 1992.Google Scholar
  18. 18.
    Gan, C. T. J., J. W. Lankhaar, N. Westerhof, J. T. Marcus, A. Becker, J. W. R. Twisk, A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132:1906–1912, 2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.PubMedCrossRefGoogle Scholar
  20. 20.
    Grant, B. J. B., and B. B. Lieber. Clinical significance of pulmonary arterial input impedance. Eur. Respir. J. 9:2196–2199, 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Grant, B. J. B., L. J. Paradowski, and J. M. Fitzpatrick. Effect of perivascular electromagnetic flow probes on pulmonary hemodynamics. J. Appl. Physiol. 65:1885–1890, 1988.PubMedGoogle Scholar
  22. 22.
    Greenwald, S. E., J. E. Moore, A. Rachev, T. P. C. Kane, and J. J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119:438–444, 1997.PubMedCrossRefGoogle Scholar
  23. 23.
    Guo, X., Y. Kono, R. Mattrey, and G. S. Kassab. Morphometry and strain distribution of the C57BL/6 mouse aorta. Am. J. Physiol. Heart Circ. Physiol. 283:H1829–H1837, 2002.PubMedGoogle Scholar
  24. 24.
    Guo, X., X. Lu, and G. S. Kassab. Transmural strain distribution in the blood vessel wall. Am. J. Physiol. Heart Circ. Physiol. 288:H881–H886, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Han, H. C., and Y. C. Fung. Longitudinal strain of canine and porcine aortas. J. Biomech. 28:637–641, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Han, H. C., and Y. C. Fung. Direct measurement of transverse residual strains in aorta. Am. J. Physiol. Heart Circ. Physiol. 39:H750–H759, 1996.Google Scholar
  27. 27.
    Hatch, J. P. Using statistical equivalence testing in clinical biofeedback research. Biofeedback Self-Regul. 21:105–119, 1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Hayashi, K., and T. Naiki. Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J. Mech. Behav. Biomed. Mater. 2:3–19, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Holzapfel, G. A. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238:290–302, 2006.PubMedCrossRefGoogle Scholar
  30. 30.
    Holzapfel, G. A. Collagen in arterial walls: biomechanical aspects. In: Collagen. Structure and Mechanics, Chapter 11, edited by F. P. Heidelberg. Berlin: Springer, 2008, pp. 285–324.Google Scholar
  31. 31.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48, 2000.CrossRefGoogle Scholar
  32. 32.
    Holzapfel, G. A., G. Sommer, M. Auer, P. Regitnig, and R. W. Ogden. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35:530–545, 2007.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang, W., Y. P. Sher, D. Delgado-West, J. T. Wu, K. Peck, and Y. C. Fung. Tissue remodeling of rat pulmonary artery in hypoxic breathing. I. Changes of morphology, zero-stress state, and gene expression. Ann. Biomed. Eng. 29:535–551, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Humphrey, J. D. Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer, 2002.Google Scholar
  35. 35.
    Hunter, K. S., J. A. Albietz, P. F. Lee, C. J. Lanning, S. R. Lammers, S. H. Hofmeister, P. H. Kao, H. J. Qi, K. R. Stenmark, and R. Shandas. In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J. Appl. Physiol. 108:968–975, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Hunter, K. S., J. K. Gross, C. J. Lanning, K. S. Kirby, K. L. Dyer, D. D. Ivy, and R. Shandas. Noninvasive methods for determining pulmonary vascular function in children with pulmonary arterial hypertension: application of a mechanical oscillator model. Congenit. Heart Dis. 3:106–116, 2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Hunter, K. S., C. J. Lanning, K. S. Kirby, D. D. Ivy, and R. Shandas. In Vivo pulmonary vascular stiffness obtained from color M-Mode tissue Doppler imaging and pressure measurements predicts clinical outcomes better than indexed pulmonary vascular resistance in pediatric patients with pulmonary arterial hypertension. Circulation 118: S879–S879, 2008.Google Scholar
  38. 38.
    Hunter, K. S., P. F. Lee, C. J. Lanning, D. D. Ivy, K. S. Kirby, L. R. Claussen, K. C. Chan, and R. Shandas. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am. Heart J. 155:166–174, 2008.PubMedCrossRefGoogle Scholar
  39. 39.
    Kao, P. H., S. R. Lammers, L. Tian, K. Hunter, K. R. Stenmark, R. Shandas, and H. J. Qi. A microstructurally driven model for pulmonary artery tissue. J. Biomech. Eng. 133:051002, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Kobs, R. W., N. E. Muvarak, J. C. Eickhoff, and N. C. Chesler. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am. J. Physiol. Heart Circ. Physiol. 288:H1209–H1217, 2005.PubMedCrossRefGoogle Scholar
  41. 41.
    Lammers, S. R., P. H. Kao, H. J. Qi, K. Hunter, C. Lanning, J. Albietz, S. Hofmeister, R. Mecham, K. R. Stenmark, and R. Shandas. Changes in the structure-function relationship of elastin and its impacts on the proximal pulmonary arterial mechanics of hypertensive calves. Am. J. Physiol. Heart Circ. Physiol. 295:H1451–H1459, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Lammers, S. R., P. Kao, L. Tian, K. Hunter, Z. VanRheen, J. Albietz, C. Lanning, S. Hoffmeister, s. Miyamoto, T. Kulik, H. J. Qi, R. Shandas, and K. Stenmark. Conduit arteries in small and large mammals express different material property changes in response to hypoxia-induced pulmonary hypertension. In: ATS International Conference, New Orleans, LA, May 14–19, 2010.Google Scholar
  43. 43.
    Lanir, Y. A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissues. J. Biomech. 12:423–436, 1979.PubMedCrossRefGoogle Scholar
  44. 44.
    Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12, 1983.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu, S. Q., and Y. C. Fung. Zero-stress states of arteries. J. Biomech. Eng. 110:82–84, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Milnor, W. R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570, 1975.PubMedCrossRefGoogle Scholar
  47. 47.
    Milnor, W. R., C. R. Conti, K. B. Lewis, and M. F. O’Rourke. Pulmonary arterial pulse wave velocity and impedance in man. Circ. Res. 25:637–649, 1969.PubMedCrossRefGoogle Scholar
  48. 48.
    Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36:661–670, 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.PubMedCrossRefGoogle Scholar
  50. 50.
    Rodés-Cabau, J., E. Domingo, A. Román, J. Majó, B. Lara, F. Padilla, I. Anívarro, J. Angel, J. C. Tardif, and J. Soler–Soler. Intravascular ultrasound of the elastic pulmonary arteries: a new approach for the evaluation of primary pulmonary hypertension. Heart 89:311–315, 2003.PubMedCrossRefGoogle Scholar
  51. 51.
    Rodríguez, J. F., C. Ruiz, M. Doblaré, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008.PubMedCrossRefGoogle Scholar
  52. 52.
    Sanz, J., M. Kariisa, S. Dellegrottaglie, S. Prat-Gonzalez, M. J. Garcia, V. Fuster, and S. Rajagopalan. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc. Imaging 2:286–295, 2009.PubMedCrossRefGoogle Scholar
  53. 53.
    Schmid, F., G. Sommer, M. Rappolt, C. A. J. Schulze-Bauer, P. Regitnig, G. A. Holzapfel, P. Laggner, and H. Amenitsch. In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering. J. Synchrotron Radiat. 12:727–733, 2005.PubMedCrossRefGoogle Scholar
  54. 54.
    Spencer, A. J. M. Constitutive theory for strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fiber-Reinforced Composites, CISM Course and Lectures No. 282, International Centre for Mechanical Sciences, Chapter 2, edited by A. J. M. Spencer. Wien, New York: Springer, 1984, pp. 23–82.Google Scholar
  55. 55.
    Stenmark, K. R., K. A. Fagan, and M. G. Frid. Hypoxia-induced pulmonary vascular remodeling—cellular and molecular mechanisms. Circ. Res. 99:675–691, 2006.PubMedCrossRefGoogle Scholar
  56. 56.
    Stenmark, K. R., J. Fasules, D. M. Hyde, N. F. Voelkel, J. Henson, A. Tucker, H. Wilson, and J. T. Reeves. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4300 m. J. Appl. Physiol. 62:821–830, 1987.PubMedGoogle Scholar
  57. 57.
    Stenmark, K. R., and R. P. Mecham. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu. Rev. Physiol. 59:89–144, 1997.PubMedCrossRefGoogle Scholar
  58. 58.
    Stergiopulos, N., S. Vulliemoz, A. Rachev, J. J. Meister, and S. E. Greenwald. Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38:237–246, 2001.PubMedCrossRefGoogle Scholar
  59. 59.
    Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17, 1987.PubMedCrossRefGoogle Scholar
  60. 60.
    Tian, L., S. R. Lammers, P. H. Kao, M. Reusser, K. R. Stenmark, K. S. Hunter, H. J. Qi, and R. Shandas. Linked opening angle and histological and mechanical aspects of the proximal pulmonary arteries of healthy and pulmonary hypertensive rats and calves. Am. J. Physiol. Heart Circ. Physiol. 301:H1810–H1818, 2011.PubMedCrossRefGoogle Scholar
  61. 61.
    Weinberg, C. E., J. R. Hertzberg, D. D. Ivy, K. S. Kirby, K. C. Chan, L. Valdes-Cruz, and R. Shandas. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurements in children with pulmonary hypertension: a new method for evaluating reactivity—in vitro and clinical studies. Circulation 110:2609–2617, 2004.PubMedCrossRefGoogle Scholar
  62. 62.
    Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer, E. R. Raman, and S. Buyle. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40:1577–1597, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Zeller, P. J., and T. C. Skalak. Contribution of individual structural components in determining the zero-stress state in small arteries. J. Vasc. Res. 35:8–17, 1998.PubMedCrossRefGoogle Scholar
  64. 64.
    Zuckerman, B. D., E. C. Orton, K. R. Stenmark, J. A. Trapp, J. R. Murphy, P. R. Coffeen, and J. T. Reeves. Alteration of the pulsatile load in the high-altitude calf model of pulmonary hypertension. J. Appl. Physiol. 70:859–868, 1991.PubMedGoogle Scholar
  65. 65.
    Zulliger, M. A., P. Fridez, K. Hayashi, and N. Stergiopulos. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37:989–1000, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Lian Tian
    • 1
  • Steven R. Lammers
    • 2
  • Philip H. Kao
    • 1
  • Joseph A. Albietz
    • 2
  • Kurt R. Stenmark
    • 2
  • H. Jerry Qi
    • 1
  • Robin Shandas
    • 1
    • 3
  • Kendall S. Hunter
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulder USA
  2. 2.Department of Pediatrics, Division of Critical CareUniversity of ColoradoDenverUSA
  3. 3.Department of BioengineeringUniversity of Colorado at DenverAuroraUSA

Personalised recommendations