Annals of Biomedical Engineering

, Volume 40, Issue 4, pp 849–859 | Cite as

E-Selectin Ligands as Mechanosensitive Receptors on Neutrophils in Health and Disease



Application of mechanical force to bonds between selectins and their ligands is a requirement for these adhesion receptors to optimally perform functions that include leukocyte tethering and activation of stable adhesion. Although all three selectins are reported to signal from the outside-in subsequent to ligand binding, E-selectin is unique in its capacity to bind multiple sialyl Lewis x presenting ligands and mediate slow rolling on the order of a micron per second. A diverse set of ligands are recognized by E-selectin in the mouse, including ESL-1, CD44 (HCELL), and PSGL-1 which are critical in transition from slow rolling to arrest and for efficient transendothelial migration. The molecular recognition process is different in humans as L-selectin is a major ligand, which along with glycolipids constitute more than half of the E-selectin receptors on human polymorphonuclear neutrophils (PMN). In addition, E-selectin is most efficient at raising the affinity and avidity of CD18 integrins that supports PMN deceleration and trafficking to sites of acute inflammation. The mechanism is only partially understood but known to involve a rise in cytosolic calcium and tyrosine phosphorylation that activates p38 MAP kinase and Syk kinase, both of which transduce signals from clustered E-selectin ligands. In this review we highlight the molecular recognition and mechanical requirements of this process to reveal how E-selectin confers selectivity and efficiency of signaling for extravasation at sites of inflammation and the mechanism of action of a new glycomimetic antagonist targeted to the lectin domain that has shown efficacy in blocking neutrophil activation and adhesion on inflamed endothelium.


E-selectin L-selectin Neutrophils PSGL-1 Cell signaling 


  1. 1.
    Abbal, C., et al. Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions. Blood 108:3352–3359, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Abbassi, O., T. K. Kishimoto, L. V. McIntire, D. C. Anderson, and C. W. Smith. E-selectin supports neutrophil rolling in vitro under conditions of flow. J. Clin. Invest. 92:2719–2730, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Akohoue, S. A., et al. Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr. Res. 61:233–238, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Alonso-Lebrero, J. L., et al. Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood 95:2413–2419, 2000.PubMedGoogle Scholar
  5. 5.
    Asa, D., et al. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J. Biol. Chem. 270:11662–11670, 1995.PubMedCrossRefGoogle Scholar
  6. 6.
    Belcher, J. D., P. H. Marker, J. P. Weber, R. P. Hebbel, and G. M. Vercellotti. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood 96:2451–2459, 2000.PubMedGoogle Scholar
  7. 7.
    Berg, E. L., M. K. Robinson, O. Mansson, E. C. Butcher, and J. L. Magnani. A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J. Biol. Chem. 266:14869–14872, 1991.PubMedGoogle Scholar
  8. 8.
    Bevilacqua, M. P., S. Stengelin, M. A. Gimbrone, Jr., and B. Seed. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160–1165, 1989.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruehl, R. E., T. A. Springer, and D. F. Bainton. Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J. Histochem. Cytochem. 44:835–844, 1996.PubMedCrossRefGoogle Scholar
  10. 10.
    Bruehl, R. E., et al. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J. Leukoc. Biol. 61:489–499, 1997.PubMedGoogle Scholar
  11. 11.
    Carlow, D. A., and H. J. Ziltener. CD43 deficiency has no impact in competitive in vivo assays of neutrophil or activated T cell recruitment efficiency. J. Immunol. 177:6450–6459, 2006.PubMedGoogle Scholar
  12. 12.
    Chang, J., et al. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood 116:1779–1786, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Crutchfield, K. L., et al. CD11b/CD18-coated microspheres attach to E-selectin under flow. J. Leukoc. Biol. 67:196–205, 2000.PubMedGoogle Scholar
  14. 14.
    Cuvelier, S. L., S. Paul, N. Shariat, P. Colarusso, and K. D. Patel. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells. J. Exp. Med. 202:865–876, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Davies, M. P., T. J. Hallam, and J. E. Merritt. A role for calcium and protein kinase C in agonist-stimulated adhesion of human neutrophils. Biochem. J. 267:13–16, 1990.PubMedGoogle Scholar
  16. 16.
    Dimitroff, C. J., J. Y. Lee, S. Rafii, R. C. Fuhlbrigge, and R. Sackstein. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J. Cell Biol. 153:1277–1286, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Dore, M., A. R. Burns, B. J. Hughes, M. L. Entman, and C. W. Smith. Chemoattractant-induced changes in surface expression and redistribution of a functional ligand for P-selectin on neutrophils. Blood 87:2029–2037, 1996.PubMedGoogle Scholar
  18. 18.
    Duits, A. J., J. B. Schnog, L. R. Lard, A. W. Saleh, and R. A. Rojer. Elevated IL-8 levels during sickle cell crisis. Eur. J. Haematol. 61:302–305, 1998.PubMedCrossRefGoogle Scholar
  19. 19.
    Erlandsen, S. L., S. R. Hasslen, and R. D. Nelson. Detection and spatial distribution of the beta 2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high-resolution field emission SEM. J. Histochem. Cytochem. 41:327–333, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Finger, E. B., et al. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266–269, 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Foxall, C., et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J. Cell Biol. 117:895–902, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Francis, R. B., Jr., and L. J. Haywood. Elevated immunoreactive tumor necrosis factor and interleukin-1 in sickle cell disease. J. Natl Med. Assoc. 84:611–615, 1992.PubMedGoogle Scholar
  23. 23.
    Fuhlbrigge, R. C., J. D. Kieffer, D. Armerding, and T. S. Kupper. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389:978–981, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuhlbrigge, R. C., S. L. King, R. Sackstein, and T. S. Kupper. CD43 is a ligand for E-selectin on CLA+ human T cells. Blood 107:1421–1426, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Ginis, I., and A. I. Tauber. Activation mechanisms of adherent human neutrophils. Blood 76:1233–1239, 1990.PubMedGoogle Scholar
  26. 26.
    Goelz, S. E., et al. ELFT: a gene that directs the expression of an ELAM-1 ligand. Cell 63:1349–1356, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Goetz, D. J., et al. Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin. J. Cell Biol. 137:509–519, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Green, C. E., D. N. Pearson, R. T. Camphausen, D. E. Staunton, and S. I. Simon. Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity beta2-integrin on neutrophils. J. Immunol. 172:7780–7790, 2004.PubMedGoogle Scholar
  29. 29.
    Hidalgo, A., A. J. Peired, M. K. Wild, D. Vestweber, and P. S. Frenette. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26:477–489, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Hidalgo, A., et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat. Med. 15:384–391, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Hidari, K. I., A. S. Weyrich, G. A. Zimmerman, and R. P. McEver. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J. Biol. Chem. 272:28750–28756, 1997.PubMedCrossRefGoogle Scholar
  32. 32.
    Huang, M. C., et al. P-selectin glycoprotein ligand-1 and E-selectin ligand-1 are differentially modified by fucosyltransferases Fuc-TIV and Fuc-TVII in mouse neutrophils. J. Biol. Chem. 275:31353–31360, 2000.PubMedCrossRefGoogle Scholar
  33. 33.
    Hynes, R. O., and A. D. Lander. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68:303–322, 1992.PubMedCrossRefGoogle Scholar
  34. 34.
    Imai, Y., L. A. Lasky, and S. D. Rosen. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 361:555–557, 1993.PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs, P. P., and R. Sackstein. CD44 and HCELL: preventing hematogenous metastasis at step 1. FEBS Lett. 585:3148–3158, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Johnston, G. I., R. G. Cook, and R. P. McEver. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56:1033–1044, 1989.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones, W. M., G. M. Watts, M. K. Robinson, D. Vestweber, and M. A. Jutila. Comparison of E-selectin-binding glycoprotein ligands on human lymphocytes, neutrophils, and bovine gamma delta T cells. J. Immunol. 159:3574–3583, 1997.PubMedGoogle Scholar
  38. 38.
    Katayama, Y., A. Hidalgo, J. Chang, A. Peired, and P. S. Frenette. CD44 is a physiological E-selectin ligand on neutrophils. J. Exp. Med. 201:1183–1189, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Kato, G. J., et al. Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. Br. J. Haematol. 130:943–953, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Kishimoto, T. K., et al. Antibodies against human neutrophil LECAM-1 (LAM-1/Leu-8/DREG-56 antigen) and endothelial cell ELAM-1 inhibit a common CD18-independent adhesion pathway in vitro. Blood 78:805–811, 1991.PubMedGoogle Scholar
  41. 41.
    Kotovuori, P., et al. The vascular E-selectin binds to the leukocyte integrins CD11/CD18. Glycobiology 3:131–136, 1993.PubMedCrossRefGoogle Scholar
  42. 42.
    Kuwano, Y., O. Spelten, H. Zhang, K. Ley, and A. Zarbock. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood 116:617–624, 2010.PubMedCrossRefGoogle Scholar
  43. 43.
    Lasky, L. A., et al. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell 56:1045–1055, 1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Lawrence, M. B., D. F. Bainton, and T. A. Springer. Neutrophil tethering to and rolling on E-selectin are separable by requirement for L-selectin. Immunity 1:137–145, 1994.PubMedCrossRefGoogle Scholar
  45. 45.
    Lawson, M. A., and F. R. Maxfield. Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377:75–79, 1995.PubMedCrossRefGoogle Scholar
  46. 46.
    Lenter, M., A. Levinovitz, S. Isenmann, and D. Vestweber. Monospecific and common glycoprotein ligands for E- and P-selectin on myeloid cells. J. Cell Biol. 125:471–481, 1994.PubMedCrossRefGoogle Scholar
  47. 47.
    Levinovitz, A., J. Muhlhoff, S. Isenmann, and D. Vestweber. Identification of a glycoprotein ligand for E-selectin on mouse myeloid cells. J. Cell Biol. 121:449–459, 1993.PubMedCrossRefGoogle Scholar
  48. 48.
    Lorant, D. E., et al. Activation of polymorphonuclear leukocytes reduces their adhesion to P-selectin and causes redistribution of ligands for P-selectin on their surfaces. J. Clin. Invest. 96:171–182, 1995.PubMedCrossRefGoogle Scholar
  49. 49.
    Lowe, J. B., et al. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 63:475–484, 1990.PubMedCrossRefGoogle Scholar
  50. 50.
    Luo, J., et al. PI3 K is involved in L-selectin- and PSGL-1-mediated neutrophil rolling on E-selectin via F-actin redistribution and assembly. J. Cell. Biochem. 110:910–919, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    Matsumoto, M., A. Shigeta, M. Miyasaka, and T. Hirata. CD43 plays both antiadhesive and proadhesive roles in neutrophil rolling in a context-dependent manner. J. Immunol. 181:3628–3635, 2008.PubMedGoogle Scholar
  52. 52.
    Matsumoto, M., et al. CD43 functions as a ligand for E-selectin on activated T cells. J. Immunol. 175:8042–8050, 2005.PubMedGoogle Scholar
  53. 53.
    McDonough, D. B., et al. Cooperativity between selectins and beta2-integrins define neutrophil capture and stable adhesion in shear flow. Ann. Biomed. Eng. 32:1179–1192, 2004.PubMedCrossRefGoogle Scholar
  54. 54.
    Moore, K. L., et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J. Cell Biol. 118:445–456, 1992.PubMedCrossRefGoogle Scholar
  55. 55.
    Moore, K. L., et al. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J. Biol. Chem. 269:23318–23327, 1994.PubMedGoogle Scholar
  56. 56.
    Moore, K. L., et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J. Cell Biol. 128:661–671, 1995.PubMedCrossRefGoogle Scholar
  57. 57.
    Nimrichter, L., et al. E-selectin receptors on human leukocytes. Blood 112:3744–3752, 2008.PubMedCrossRefGoogle Scholar
  58. 58.
    Norgard, K. E., et al. Characterization of a specific ligand for P-selectin on myeloid cells. A minor glycoprotein with sialylated O-linked oligosaccharides. J. Biol. Chem. 268:12764–12774, 1993.PubMedGoogle Scholar
  59. 59.
    Nusse, O., L. Serrander, D. P. Lew, and K. H. Krause. Ca2+-induced exocytosis in individual human neutrophils: high- and low-affinity granule populations and submaximal responses. EMBO J. 17:1279–1288, 1998.PubMedCrossRefGoogle Scholar
  60. 60.
    Nusse, O., et al. Store-operated Ca2+ influx and stimulation of exocytosis in HL-60 granulocytes. J. Biol. Chem. 272:28360–28367, 1997.PubMedCrossRefGoogle Scholar
  61. 61.
    Phillips, M. L., et al. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250:1130–1132, 1990.PubMedCrossRefGoogle Scholar
  62. 62.
    Phong, M. C., et al. Molecular mechanisms of L-selectin-induced co-localization in rafts and shedding [corrected]. Biochem. Biophys. Res. Commun. 300:563–569, 2003.PubMedCrossRefGoogle Scholar
  63. 63.
    Picker, L. J., et al. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66:921–933, 1991.PubMedCrossRefGoogle Scholar
  64. 64.
    Polley, M. J., et al. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc. Natl Acad. Sci. USA 88:6224–6228, 1991.PubMedCrossRefGoogle Scholar
  65. 65.
    Ponta, H., L. Sherman, and P. A. Herrlich. CD44: from adhesion molecules to signalling regulators. Natl Rev. Mol. Cell Biol. 4:33–45, 2003.CrossRefGoogle Scholar
  66. 66.
    Pouyani, T., and B. Seed. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 83:333–343, 1995.PubMedCrossRefGoogle Scholar
  67. 67.
    Rossaint, J., et al. Acute loss of renal function attenuates slow leukocyte rolling and transmigration by interfering with intracellular signaling. Kidney Int. 80:493–503, 2011.PubMedCrossRefGoogle Scholar
  68. 68.
    Sackstein, R. The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing. J. Invest. Dermatol. 122:1061–1069, 2004.PubMedGoogle Scholar
  69. 69.
    Sako, D., et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75:1179–1186, 1993.PubMedCrossRefGoogle Scholar
  70. 70.
    Sako, D., et al. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 83:323–331, 1995.PubMedCrossRefGoogle Scholar
  71. 71.
    Santos, A. L., et al. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol. Rev. 31:570–591, 2007.PubMedCrossRefGoogle Scholar
  72. 72.
    Schaff, U., P. E. Mattila, S. I. Simon, and B. Walcheck. Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J. Leukoc. Biol. 83:99–105, 2008.PubMedCrossRefGoogle Scholar
  73. 73.
    Schaff, U. Y., et al. Calcium flux in neutrophils synchronizes beta2 integrin adhesive and signaling events that guide inflammatory recruitment. Ann. Biomed. Eng. 36:632–646, 2008.PubMedCrossRefGoogle Scholar
  74. 74.
    Siegelman, M. H., M. van de Rijn, and I. L. Weissman. Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. Science 243:1165–1172, 1989.PubMedCrossRefGoogle Scholar
  75. 75.
    Simon, S. I., and C. E. Green. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu. Rev. Biomed. Eng. 7:151–185, 2005.PubMedCrossRefGoogle Scholar
  76. 76.
    Simon, S. I., Y. Hu, D. Vestweber, and C. W. Smith. Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J. Immunol. 164:4348–4358, 2000.PubMedGoogle Scholar
  77. 77.
    Smith, R. J., et al. Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther. 253:688–697, 1990.PubMedGoogle Scholar
  78. 78.
    Sperandio, M., et al. P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med. 197:1355–1363, 2003.PubMedCrossRefGoogle Scholar
  79. 79.
    Steegmaier, M., E. Borges, J. Berger, H. Schwarz, and D. Vestweber. The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J. Cell Sci. 110(Pt 6):687–694, 1997.PubMedGoogle Scholar
  80. 80.
    Steegmaier, M., et al. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373:615–620, 1995.PubMedCrossRefGoogle Scholar
  81. 81.
    Taylor, A. D., S. Neelamegham, J. D. Hellums, C. W. Smith, and S. I. Simon. Molecular dynamics of the transition from L-selectin- to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear. Biophys. J. 71:3488–3500, 1996.PubMedCrossRefGoogle Scholar
  82. 82.
    Tedder, T. F., et al. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. Homology with the mouse lymphocyte homing receptor and other human adhesion proteins. J. Exp. Med. 170:123–133, 1989.PubMedCrossRefGoogle Scholar
  83. 83.
    Tiemeyer, M., et al. Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc. Natl Acad. Sci. USA 88:1138–1142, 1991.PubMedCrossRefGoogle Scholar
  84. 84.
    Truneh, A., F. Albert, P. Golstein, and A. M. Schmitt-Verhulst. Calcium ionophore plus phorbol ester can substitute for antigen in the induction of cytolytic T lymphocytes from specifically primed precursors. J. Immunol. 135:2262–2267, 1985.PubMedGoogle Scholar
  85. 85.
    Truneh, A., F. Albert, P. Golstein, and A. M. Schmitt-Verhulst. Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313:318–320, 1985.PubMedCrossRefGoogle Scholar
  86. 86.
    Turhan, A., L. A. Weiss, N. Mohandas, B. S. Coller, and P. S. Frenette. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc. Natl Acad. Sci. USA 99:3047–3051, 2002.PubMedCrossRefGoogle Scholar
  87. 87.
    Urzainqui, A., et al. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 17:401–412, 2002.PubMedCrossRefGoogle Scholar
  88. 88.
    Varki, A. Selectin ligands. Proc. Natl Acad. Sci. USA 91:7390–7397, 1994.PubMedCrossRefGoogle Scholar
  89. 89.
    Vichinsky, E. P., et al. Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative Study of Sickle Cell Disease. Blood 89:1787–1792, 1997.PubMedGoogle Scholar
  90. 90.
    von Andrian, U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82:989–999, 1995.CrossRefGoogle Scholar
  91. 91.
    Walz, G., A. Aruffo, W. Kolanus, M. Bevilacqua, and B. Seed. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 250:1132–1135, 1990.PubMedCrossRefGoogle Scholar
  92. 92.
    Wun, T., M. Cordoba, A. Rangaswami, A. W. Cheung, and T. Paglieroni. Activated monocytes and platelet-monocyte aggregates in patients with sickle cell disease. Clin. Lab. Haematol. 24:81–88, 2002.PubMedGoogle Scholar
  93. 93.
    Yago, T., et al. Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc. Natl Acad. Sci. USA 107:9204–9209, 2010.PubMedCrossRefGoogle Scholar
  94. 94.
    Yang, J., J. Galipeau, C. A. Kozak, B. C. Furie, and B. Furie. Mouse P-selectin glycoprotein ligand-1: molecular cloning, chromosomal localization, and expression of a functional P-selectin receptor. Blood 87:4176–4186, 1996.PubMedGoogle Scholar
  95. 95.
    Zarbock, A., C. A. Lowell, and K. Ley. Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1. Immunity 26:773–783, 2007.PubMedCrossRefGoogle Scholar
  96. 96.
    Zen, K., L. B. Cui, C. Y. Zhang, and Y. Liu. Critical role of mac-1 sialyl lewis x moieties in regulating neutrophil degranulation and transmigration. J. Mol. Biol. 374:54–63, 2007.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhou, Q., et al. The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells. J. Cell Biol. 115:557–564, 1991.PubMedCrossRefGoogle Scholar
  98. 98.
    Zollner, O., and D. Vestweber. The E-selectin ligand-1 is selectively activated in Chinese hamster ovary cells by the alpha(1,3)-fucosyltransferases IV and VII. J. Biol. Chem. 271:33002–33008, 1996.PubMedCrossRefGoogle Scholar
  99. 99.
    Zollner, O., et al. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin. J. Cell Biol. 136:707–716, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  1. 1.University of California DavisDavisUSA
  2. 2.GlycoMimetics, Inc.GaithersburgUSA

Personalised recommendations