Annals of Biomedical Engineering

, Volume 40, Issue 7, pp 1468–1485 | Cite as

A Numerical Investigation of Blood Damage in the Hinge Area of Aortic Bileaflet Mechanical Heart Valves During the Leakage Phase

  • B. Min Yun
  • Jingshu Wu
  • Helene A. Simon
  • Shiva Arjunon
  • Fotis Sotiropoulos
  • Cyrus K. Aidun
  • Ajit P. Yoganathan
Article

Abstract

Previous experimental and numerical blood studies have shown that high shear stress levels, long exposure times to these shear stresses, and flow recirculation promote thromboembolism. Artificial heart valves, in particular bileaflet mechanical heart valves (BMHVs), are prone to developing thromboembolic complications. These complications often form at the hinge regions of BMHVs and the associated geometry has been shown to affect the local flow dynamics and the associated thrombus formation. However, to date no study has focused on simulating the motion of realistically modeled blood elements within the hinge region to numerically estimate the hinge-related blood damage. Consequently, this study aims at (a) simulating the motion of realistically modeled platelets during the leakage (mid-diastole) phase in different BMHV hinge designs placed in the aortic position and (b) quantitatively comparing the blood damage associated with different designs. Three designs are investigated to assess the effects of hinge geometry and dimensions: a 23 mm St. Jude Medical Regent™ valve hinge with two different gap distances between the leaflet ear and hinge recess; and a 23 mm CarboMedics (CM) aortic valve hinge. The recently developed lattice-Boltzmann method with external boundary force method is used to simulate the hinge flow and capture the dynamics and surface shear stresses of individual platelets. A blood damage index (BDI) value is then estimated based on a linear shear stress-exposure time BDI model. The velocity boundary conditions are obtained from previous 3D large-scale simulations of the hinge flow fields. The trajectories of the blood elements in the hinge region are found to be qualitatively similar for all three hinges, but the shear stresses experienced by individual platelets are higher for the CM hinge design, leading to a higher BDI. The results of this study are also shown to be in good agreement with previous studies, thus validating the numerical method for future research in BMHV flows. This study provides a general numerical tool to optimize the hinge design based on both hemodynamic and thromboembolic performance.

Keywords

Blood damage modeling Computational fluid dynamics (CFD) Platelet activation Hinge flow Particulate numerical simulations Thromboembolism Bileaflet mechanical heart valve 

References

  1. 1.
    Aidun, C. K., and J. R. Clausen. Lattice Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42:439–472, 2009.CrossRefGoogle Scholar
  2. 2.
    Aidun, C. K., and Y. Lu. Lattice Boltzmann simulation of solid particles suspended in fluid. J. Stat. Phys. 81(1):49–61, 1995.CrossRefGoogle Scholar
  3. 3.
    Aidun, C. K., Y. Lu, and E. Ding. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373:287, 1998.CrossRefGoogle Scholar
  4. 4.
    Akins, C. W. Results with mechanical cardiac valvular prostheses. Ann. Thorac. Surg. 60(6):1836–1844, 1995.PubMedCrossRefGoogle Scholar
  5. 5.
    Alemu, Y., G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, and D. Bluestein. Design optimization of a mechanical heart valve for reducing valve thrombogenicity—a case study with ATS valve. ASAIO 56(5):389, 2010.CrossRefGoogle Scholar
  6. 6.
    Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46(2):77–81, 2009.PubMedGoogle Scholar
  7. 7.
    Black, M. M., and P. J. Drury. Mechanical and other problems of artificial valves. Curr. Top. Pathol. 86:127–159, 1994.PubMedCrossRefGoogle Scholar
  8. 8.
    Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–375, 2011.CrossRefGoogle Scholar
  9. 9.
    Ding, E. J., and C. K. Aidun. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys. 112(3):685–708, 2003.CrossRefGoogle Scholar
  10. 10.
    Dumont, K., et al. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129:558–565, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Ellis, J., and A. P. Yoganathan. A comparison of the hinge and near-hinge flow fields of the St. Jude Medical hemodynamic plus and regent bileaflet mechanical heart valves. J. Thorac. Cardiovasc. Surg. 119:83–93, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellis, J. T., et al. Velocity measurements and flow pattern within the hinge region of a medtronic parallel bileaflet mechanical heart valve with clear housing. J. Heart Valve Dis. 5(6):591–599, 1996.PubMedGoogle Scholar
  13. 13.
    Fallon, A. M., L. P. Dasi, U. M. Marzec, S. R. Hanson, and A. P. Yoganathan. Procoagulant properties of flow fields in stenotic and expansive orifices. Ann. Biomed. Eng. 36(1):1–13, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Giersiepen, M., et al. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5):300–306, 1990.PubMedGoogle Scholar
  15. 15.
    Gross, J. M., et al. A microstructural flow analysis within a bileaflet mechanical heart valve hinge. J. Heart Valve Dis. 5(6):581–590, 1996.PubMedGoogle Scholar
  16. 16.
    Hellums, J. D. Whitaker lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102:161, 1922.CrossRefGoogle Scholar
  18. 18.
    Lamson, T. C., G. Rosenberg, D. B. Geselowitz, S. Deutsch, D. R. Stinebring, J. A. Frangos, and J. M. Tarbell. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO 39(3):M626, 1993.CrossRefGoogle Scholar
  19. 19.
    Leo, H. L. An In Vitro Investigation of the Flow Fields Through Bileaflet and Polymeric Prosthetic Heart Valves. Atlanta: School of Biomedical Engineering, Georgia Institute of Technology, 2005.Google Scholar
  20. 20.
    Leo, H.-L., Z. He, J. T. Ellis, and A. P. Yoganathan. Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. J. Thorac. Cardiovasc. Surg. 124:561–574, 2002.PubMedCrossRefGoogle Scholar
  21. 21.
    Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy, D. W., L. P. Dasi, J. Vukasinovic, A. Glezer, and A. P. Yoganathan. Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. J. Biomech. Eng. 132:071011, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38(4):1442–1450, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Simon, H. A. Numerical Simulations of the Micro Flow Field in the Hinge Region of Bileaflet Mechanical Heart Valves. Atlanta: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2009.Google Scholar
  25. 25.
    Simon, H. A., L. Ge, F. Sotiropoulos, and A. P. Yoganathan. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann. Biomed. Eng. 38(11):3295–3310, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Simon, H. A., et al. Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann. Biomed. Eng. 32(12):1607–1617, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Tambasco, M., and D. A. Steinman. Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann. Biomed. Eng. 31:1054–1065, 2003.PubMedCrossRefGoogle Scholar
  28. 28.
    Vallana, F., S. Rinaldi, P. M. Galletti, A. Nguyen, and A. Piwnica. Pivot design in bileaflet valves. ASAIO 38(3):M600, 1992.CrossRefGoogle Scholar
  29. 29.
    Wu, J., and C. K. Aidun. Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int. J. Numer. Method Fluids 62(7):765–783, 2010.Google Scholar
  30. 30.
    Wu, J., and C. K. Aidun. A method for direct simulation of flexible fiber suspensions using lattice-Boltzmann equation with external boundary force. Int. J. Multiph. Flow 36:202–209, 2010.CrossRefGoogle Scholar
  31. 31.
    Wu, J., B. M. Yun, A. M. Fallon, S. R. Hanson, C. K. Aidun, and A. P. Yoganathan. Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann. Biomed. Eng. 39:897–910, 2011.PubMedCrossRefGoogle Scholar
  32. 32.
    Wurzinger, L. J., et al. Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb. Haemost. 54(2):381–386, 1985.PubMedGoogle Scholar
  33. 33.
    Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43(12):2400–2409, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Yin, W., S. Gallocher, L. Pinchuk, R. T. Schoephoerster, J. Jesty, and D. Bluestein. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve. Artif. Organs 29(10):826–831, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Yin, W., I. B. Krukenkamp, A. E. Saltman, G. Gaudette, K. Suresh, O. Bernal, J. Jesty, and D. Bluestein. Thrombogenic performance of a St. Jude bileaflet mechanical heart valve in a sheep model. ASAIO 52(1):8, 2006.CrossRefGoogle Scholar
  36. 36.
    Yoganathan, A. P., H.-L. Leo, B. R. Travis, et al. Heart Valve Bioengineering. Encyclopedia of Comprehensive Structural Integrity. Amsterdam: Elsevier, pp. 795–796, 2003.Google Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • B. Min Yun
    • 1
  • Jingshu Wu
    • 1
  • Helene A. Simon
    • 2
  • Shiva Arjunon
    • 4
  • Fotis Sotiropoulos
    • 3
  • Cyrus K. Aidun
    • 1
  • Ajit P. Yoganathan
    • 2
    • 4
  1. 1.G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Civil EngineeringUniversity of MinnesotaMinneapolisUSA
  4. 4.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations