Annals of Biomedical Engineering

, Volume 40, Issue 5, pp 1028–1038 | Cite as

Aging Impact on Thoracic Aorta 3D Morphometry in Intermediate-Risk Subjects: Looking Beyond Coronary Arteries with Non-Contrast Cardiac CT

  • Damian CraiemEmail author
  • Gilles Chironi
  • Alban Redheuil
  • Mariano Casciaro
  • Elie Mousseaux
  • Alain Simon
  • Ricardo L. Armentano


An increasing number of intermediate risk asymptomatic subjects benefit from measures of atherosclerosis burden like coronary artery calcification studies with non-contrast heart computed tomography (CT). However, additional information can be derived from these studies, looking beyond the coronary arteries and without exposing the patients to further radiation. We report a semi-automatic method that objectively assesses ascending, arch and descending aorta dimension and shape from non-contrast CT datasets to investigate the effect of aging on thoracic aorta geometry. First, the segmentation process identifies the vessel centerline coordinates following a toroidal path for the curvilinear portion and axial planes for descending aorta. Then, reconstructing oblique planes orthogonal to the centerline direction, it iteratively fits circles inside the vessel cross-section. Finally, regional thoracic aorta dimensions (diameter, volume and length) and shape (vessel curvature and tortuosity) are calculated. A population of 200 normotensive men was recruited. Length, mean diameter and volume differed by 1.2 cm, 0.13 cm and 21 cm3 per decade of life, respectively. Aortic shape uncoiled with aging, reducing its tortuosity and increasing its radius of curvature. The arch was the most affected segment. In conclusion, non-contrast cardiac CT imaging can be successfully employed to assess thoracic aorta 3D morphometry.


Aging Aortic arch uncoiling Aorta 3D reconstruction Aorta volume Aorta tortuosity 



This work was supported by the project PIP number 112-200901-00734 (CONICET) and the Houssay post-doctoral program (CONICET).


  1. 1.
    Agmon, Y., B. K. Khandheria, I. Meissner, G. L. Schwartz, J. D. Sicks, A. J. Fought, W. M. O’Fallon, D. O. Wiebers, and A. J. Tajik. Is aortic dilatation an atherosclerosis-related process? Clinical, laboratory, and transesophageal echocardiographic correlates of thoracic aortic dimensions in the population with implications for thoracic aortic aneurysm formation. J. Am. Coll. Cardiol. 42(6):1076–1083, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Behrens, T., K. Rohr, and H. S. Stiehl. Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4):554–561, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Budoff, M. J., and K. M. Gul. Expert review on coronary calcium. Vasc. Health Risk Manag. 4(2):315–324, 2008.PubMedGoogle Scholar
  4. 4.
    Chironi, G., L. Orobinskaia, J. L. Megnien, M. E. Sirieix, S. Clement-Guinaudeau, M. Bensalah, A. Azarine, E. Mousseaux, and A. Simon. Early thoracic aorta enlargement in asymptomatic individuals at risk for cardiovascular disease: determinant factors and clinical implication. J. Hypertens. 28(10):2134–2138, 2010.PubMedGoogle Scholar
  5. 5.
    Choi, G., C. Cheng, N. Wilson, and C. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37(1):14–33, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Chyu, K. Y., and P. K. Shah. Emerging therapies for atherosclerosis prevention and management. Cardiol. Clin. 29(1):123–135, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    de Bruijne, M., B. van Ginneken, M. A. Viergever, and W. J. Niessen. Adapting active shape models for 3D segmentation of tubular structures in medical images. Inf. Process. Med. Imaging 18:136–147, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Dotter, C. T., D. J. Roberts, and I. Steinberg. Aortic length: angiocardiographic measurements. Circulation 2(6):915–920, 1950.PubMedGoogle Scholar
  9. 9.
    Elefteriades, J. A., and E. A. Farkas. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55(9):841–857, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Frangi, A. F., W. J. Niessen, R. M. Hoogeveen, T. van Walsum, and M. A. Viergever. Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10):946–956, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Funka-Lea, G., Y. Boykov, C. Florin, M. P. Jolly, R. Moreau-Gobard, R. Ramaraj, and D. Rinck. Automatic heart isolation for CT coronary visualization using graph-cuts. In: Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, 2006, pp. 614–617.Google Scholar
  12. 12.
    Gentile, B. J., D. R. Gross, C. J. Chuong, and N. H. Hwang. Segmental volume distensibility of the canine thoracic aorta in vivo. Cardiovasc. Res. 22(6):385–389, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Giulini, S. M., and S. Bonardelli. Post-traumatic lesions of the aortic isthmus. Ann. Ital. Chir. 80(2):89–100, 2009.PubMedGoogle Scholar
  14. 14.
    Greenland, P., J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A. Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson, F. G. Kushner, et al. ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 56(25):e50–e103, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenland, P., S. C. Smith, Jr., and S. M. Grundy. Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation 104(15):1863–1867, 2001.PubMedCrossRefGoogle Scholar
  16. 16.
    Kannel, W. B., R. B. D’Agostino, L. Sullivan, and P. W. Wilson. Concept and usefulness of cardiovascular risk profiles. Am. Heart J. 148(1):16–26, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Kovács, T. Automatic segmentation of the vessel lumen from 3D CTA images of aortic dissection. In: Selected Readings in Vision and Graphics, edited by L. Van Gool, G. Székely, M. Gross, and B. Schiele. Konstanz: Hartung-Gorre Verlag, 2010.Google Scholar
  18. 18.
    Kurkure, U., O. C. Avila-Montes, and I. A. Kakadiaris. Automated segmentation of thoracic aorta in non-contrast CT images. In: Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, 2008, pp. 29–32.Google Scholar
  19. 19.
    Mao, S. S., N. Ahmadi, B. Shah, D. Beckmann, A. Chen, L. Ngo, F. R. Flores, Y. L. Gao, and M. J. Budoff. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad. Radiol. 15(7):827–834, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Muntendam, P., C. McCall, J. Sanz, E. Falk, and V. Fuster. The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease—study design and objectives. Am. Heart J. 160(1):49–57e41, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Rourke, M., A. Farnsworth, and J. O’Rourke. Aortic dimensions and stiffness in normal adults. JACC Cardiovasc. Imaging 1(6):749–751, 2008.PubMedCrossRefGoogle Scholar
  22. 22.
    Patel, D. J., A. J. Mallos, and D. L. Fry. Aortic mechanics in the living dog. J. Appl. Physiol. 16:293–299, 1961.PubMedGoogle Scholar
  23. 23.
    Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209, 2011.PubMedCrossRefGoogle Scholar
  24. 24.
    Rueckert, D., P. Burger, S. M. Forbat, R. D. Mohiaddin, and G. Z. Yang. Automatic tracking of the aorta in cardiovascular MR images using deformable models. IEEE Trans. Med. Imaging 16(5):581–590, 1997.PubMedCrossRefGoogle Scholar
  25. 25.
    Rumberger, J. A. Using noncontrast cardiac CT and coronary artery calcification measurements for cardiovascular risk assessment and management in asymptomatic adults. Vasc. Health Risk Manag. 6:579–591, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Schwartz, E., R. Gottardi, J. Holfeld, C. Loewe, M. Czerny, and G. Langs. Evaluating deformation patterns of the thoracic aorta in gated CTA sequences. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on, 2010, pp. 21–24.Google Scholar
  27. 27.
    Shah, P. K. Screening asymptomatic subjects for subclinical atherosclerosis: can we, does it matter, and should we? J. Am. Coll. Cardiol. 56(2):98–105, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Sugawara, J., K. Hayashi, T. Yokoi, and H. Tanaka. Age-associated elongation of the ascending aorta in adults. J. Am. Coll. Cardiol. Imaging 1(6):739–748, 2008.Google Scholar
  29. 29.
    Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Steinman, J. D. Spence, and B. K. Rutt. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36(11):2450–2456, 2005.PubMedCrossRefGoogle Scholar
  30. 30.
    Vasan, R. S., M. G. Larson, and D. Levy. Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 91(3):734–740, 1995.PubMedGoogle Scholar
  31. 31.
    Wolak, A., H. Gransar, L. E. J. Thomson, J. D. Friedman, R. Hachamovitch, A. Gutstein, L. J. Shaw, D. Polk, N. D. Wong, R. Saouaf, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc. Imaging 1(2):200–209, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101(5):1412–1418, 2006.PubMedCrossRefGoogle Scholar
  33. 33.
    Worz, S., H. von Tengg-Kobligk, V. Henninger, F. Rengier, H. Schumacher, D. Bockler, H. U. Kauczor, and K. Rohr. 3-D quantification of the aortic arch morphology in 3-D CTA data for endovascular aortic repair. IEEE Trans. Biomed. Eng. 57(10):2359–2368, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhao, F., H. Zhang, A. Wahle, M. T. Thomas, A. H. Stolpen, T. D. Scholz, and M. Sonka. Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med. Image Anal. 13(3):483–493, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Damian Craiem
    • 1
    • 2
    Email author
  • Gilles Chironi
    • 3
    • 4
    • 5
  • Alban Redheuil
    • 4
    • 6
    • 7
  • Mariano Casciaro
    • 1
    • 2
  • Elie Mousseaux
    • 4
    • 6
    • 7
  • Alain Simon
    • 3
    • 4
    • 5
  • Ricardo L. Armentano
    • 1
  1. 1.Favaloro UniversityBuenos AiresArgentina
  2. 2.CONICETBuenos AiresArgentina
  3. 3.Centre de Médecine Préventive Cardiovasculaire, Hôpital Européen Georges Pompidou, APHPParisFrance
  4. 4.Faculté de Médecine, Université Paris DescartesParisFrance
  5. 5.Centre de Recherche Cardiovasculaire de l’HEGP (INSERM U970)ParisFrance
  6. 6.Département de Radiologie CardiovasculaireHôpital Européen Georges Pompidou, APHPParisFrance
  7. 7.Unité INSERM 678ParisFrance

Personalised recommendations