Annals of Biomedical Engineering

, Volume 40, Issue 5, pp 1088–1101 | Cite as

Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles



Redundancy in the human muscular system makes it challenging to assess age-related changes in muscle mechanical properties in vivo, as ethical considerations prohibit direct muscle force measurement. We overcame this by using a hybrid approach that combined magnetic resonance and ultrasound imaging, dynamometer measurements, muscle modeling, and numerical optimization to obtain subject-specific estimates of the mechanical properties of tibialis anterior, gastrocnemius, and soleus muscles from young and older adults. We hypothesized that older subjects would have lower maximal isometric forces, slower contractile and stiffer elastic characteristics, and that subject-specific muscle properties would give more accurate joint torque predictions compared to generic properties. Unknown muscle model parameters were obtained by minimizing the difference between simulated and actual subject torque-time histories under both isometric and isovelocity conditions. The resulting subject-specific models showed age- and gender-related differences, with older adults displaying reduced maximal isometric forces, slower force–velocity and altered force–length properties and stiffer elasticity. Tibialis anterior was least affected by aging. Subject-specific models gave good predictions of experimental concentric torque-time histories (10–14% error), but were less accurate for eccentric conditions. With generic muscle properties prediction errors were about twice as large. For maximum predictive power, musculoskeletal models should be tailored to individual subjects.


Aging Musculoskeletal modeling Hill muscle model Tibialis anterior Soleus Gastrocnemius Triceps surae Subject-specific Optimization 



This research was supported by NIH grant R03AG026281. We would like to thank Jeff Gagnon for assistance with muscle modeling.


  1. 1.
    Agur, A. M., V. Ng Thow Hing, K. A. Ball, E. Fiume, and N. H. McKee. Documentation and three dimensional modelling of human soleus muscle architecture. Clin. Anat. 16:285–293, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.PubMedCrossRefGoogle Scholar
  3. 3.
    Bahler, A. S. Series elastic component of mammalian skeletal muscle. Am. J. Physiol. 213:1560–1564, 1967.PubMedGoogle Scholar
  4. 4.
    Bahler, A. S. Modeling of mammalian skeletal muscle. IEEE Trans. Biomed. Eng. 15:249–257, 1968.PubMedCrossRefGoogle Scholar
  5. 5.
    Baumgartner, R. N., D. L. Waters, D. Gallagher, J. E. Morley, and P. J. Garry. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 107:123–136, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanpied, P., and G. L. Smidt. The difference in stiffness of the active plantarflexors between young and elderly human females. J. Gerontol. 48:M58–M63, 1993.PubMedGoogle Scholar
  7. 7.
    Bobbert, M. F., and G. J. van Ingen Schenau. Isokinetic plantar flexion: experimental results and model calculations. J. Biomech. 23:105–119, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Bojsen-Moller, J., P. Hansen, P. Aagaard, U. Svantesson, M. Kjaer, and S. P. Magnusson. Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo. J. Appl. Physiol. 97:1908–1914, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Brand, R. A., D. R. Pedersen, and J. A. Friederich. The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J. Biomech. 19:589–596, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Buchanan, T. S., D. G. Lloyd, K. Manal, and T. F. Besier. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med. Sci. Sports Exerc. 37:1911–1916, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Caldwell, G. E., and A. E. Chapman. The general distribution problem: a physiological solution which includes antagonism. Hum. Mov. Sci. 10:355–392, 1991.CrossRefGoogle Scholar
  12. 12.
    Chino, K., T. Oda, T. Kurihara, T. Nagayoshi, K. Yoshikawa, H. Kanehisa, T. Fukunaga, S. Fukashiro, and Y. Kawakami. In vivo fascicle behavior of synergistic muscles in concentric and eccentric plantar flexions in humans. J. Electromyogr. Kinesiol. 18:79–88, 2008.PubMedCrossRefGoogle Scholar
  13. 13.
    Close, R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J. Physiol. 204:331–346, 1969.PubMedGoogle Scholar
  14. 14.
    Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52:129–197, 1972.PubMedGoogle Scholar
  15. 15.
    Cook, C., and M. McDonagh. Force responses to controlled stretches of electrically stimulated human muscle–tendon complex. Exp. Physiol. 80:477–490, 1995.PubMedGoogle Scholar
  16. 16.
    Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Diffee, G. M., V. J. Caiozzo, R. E. Herrick, and K. M. Baldwin. Contractile and biochemical properties of rat soleus and plantaris after hindlimb suspension. Am. J. Physiol. Cell Physiol. 260:C528–C534, 1991.Google Scholar
  18. 18.
    Edman, K. A., C. Caputo, and F. Lou. Depression of tetanic force induced by loaded shortening of frog muscle fibres. J. Physiol. 466:535–552, 1993.PubMedGoogle Scholar
  19. 19.
    Edman, K. A., G. Elzinga, and M. I. Noble. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J. Physiol. 281:139–155, 1978.PubMedGoogle Scholar
  20. 20.
    Enoka, R. M. Eccentric contractions require unique activation strategies by the nervous system. J. Appl. Physiol. 81:2339–2346, 1996.PubMedGoogle Scholar
  21. 21.
    Epstein, M., and W. Herzog. Theoretical Models of Skeletal Muscle. New York: Wiley, 1998.Google Scholar
  22. 22.
    FitzHugh, R. A model of optimal voluntary muscular control. J. Math. Biol. 4:203–236, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Frontera, W. R., D. Suh, L. S. Krivickas, V. A. Hughes, R. Goldstein, and R. Roubenoff. Skeletal muscle fiber quality in older men and women. Am. J. Physiol. Cell Physiol. 279:C611–C618, 2000.PubMedGoogle Scholar
  24. 24.
    Fukashiro, S., M. Rob, Y. Ichinose, Y. Kawakami, and T. Fukunaga. Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur. J. Appl. Physiol. Occup. Physiol. 71:555–557, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Fukunaga, T., K. Kubo, Y. Kawakami, S. Fukashiro, H. Kanehisa, and C. N. Maganaris. In vivo behaviour of human muscle tendon during walking. Proc. R. Soc. B 268:229, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Garner, B. A., and M. G. Pandy. Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31:207–220, 2003.PubMedCrossRefGoogle Scholar
  27. 27.
    Gordon, A. M., A. F. Huxley, and F. J. Julian. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184:170–192, 1966.PubMedGoogle Scholar
  28. 28.
    Harman, S. M., E. J. Metter, J. D. Tobin, J. Pearson, and M. R. Blackman. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J. Clin. Endocrinol. Metab. 86:724–731, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Hasson, C. J., J. A. Kent-Braun, and G. E. Caldwell. Contractile and non-contractile tissue volume and distribution in ankle muscles of young and older adults. J. Biomech. 44:2299–2306, 2011.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasson, C. J., R. H. Miller, and G. E. Caldwell. Contractile and elastic ankle joint muscular properties in young and older adults. PLoS One 6:e15953, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Henriksson-Larsén, K. B., J. Lexell, and M. Sjöström. Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem. J. 15:167–178, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. B 126B:136–195, 1938.CrossRefGoogle Scholar
  33. 33.
    Hill, A. V. First and Last Experiments in Muscle Mechanics. London: Cambridge Press, 1970.Google Scholar
  34. 34.
    Hof, A. L. Muscle mechanics and neuromuscular control. J. Biomech. 36:1031–1038, 2003.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoy, M. G., F. E. Zajac, and M. E. Gordon. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment–angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23:157–169, 1990.PubMedCrossRefGoogle Scholar
  36. 36.
    Huijing, P. A. Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity. Eur. J. Morphol. 34:47–54, 1996.PubMedCrossRefGoogle Scholar
  37. 37.
    Jakobsson, F., K. Borg, L. Edström, and L. Grimby. Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve 11:1211–1218, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson, M. A., J. Polgar, D. Weightman, and D. Appleton. Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J. Neurol. Sci. 18:111–129, 1973.PubMedCrossRefGoogle Scholar
  39. 39.
    Kannus, P., M. Paavola, and L. Józsa. Aging and degeneration of tendons. In: Tendon Injuries: Basic Science and Clinical Medicine, edited by N. Maffulli, P. Renström, and W. B. Leadbetter. London: Springer, 2005, pp. 25–31.Google Scholar
  40. 40.
    Kent-Braun, J. A., and A. V. Ng. Specific strength and voluntary muscle activation in young and elderly women and men. J. Appl. Physiol. 87:22–29, 1999.PubMedGoogle Scholar
  41. 41.
    Klass, M., S. Baudry, and J. Duchateau. Aging does not affect voluntary activation of the ankle dorsiflexors during isometric, concentric, and eccentric contractions. J. Appl. Physiol. 99:31–38, 2005.PubMedCrossRefGoogle Scholar
  42. 42.
    Lanza, I. R., T. F. Towse, G. E. Caldwell, D. M. Wigmore, and J. A. Kent-Braun. Effects of age on human muscle torque, velocity, and power in two muscle groups. J. Appl. Physiol. 95:2361–2369, 2003.PubMedGoogle Scholar
  43. 43.
    Larsson, L., X. Li, and W. R. Frontera. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am. J. Physiol. 272:C638–C649, 1997.PubMedGoogle Scholar
  44. 44.
    Loram, I. D., C. N. Maganaris, and M. Lakie. Paradoxical muscle movement in human standing. J. Physiol. 556:683–689, 2004.PubMedCrossRefGoogle Scholar
  45. 45.
    Lundberg, A., O. Svensson, G. Nemeth, and G. Selvik. The axis of rotation of the ankle joint. J. Bone Joint Surg. Br. 71:94–99, 1989.PubMedGoogle Scholar
  46. 46.
    Maganaris, C. N., V. Baltzopoulos, and A. J. Sargeant. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J. Physiol. 512(Pt 2):603–614, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Maganaris, C. N., V. Baltzopoulos, and A. J. Sargeant. Changes in the tibialis anterior tendon moment arm from rest to maximum isometric dorsiflexion: in vivo observations in man. Clin. Biomech. 14:661–666, 1999.CrossRefGoogle Scholar
  48. 48.
    Morgan, D. New insights into the behavior of muscle during active lengthening. Biophys. J. 57:209–221, 1990.PubMedCrossRefGoogle Scholar
  49. 49.
    Narici, M. V., C. N. Maganaris, N. D. Reeves, and P. Capodaglio. Effect of aging on human muscle architecture. J. Appl. Physiol. 95:2229–2234, 2003.PubMedGoogle Scholar
  50. 50.
    Ochala, J., W. R. Frontera, D. J. Dorer, J. Van Hoecke, and L. S. Krivickas. Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J. Gerontol. A Biol. Sci. Med. Sci. 62:375–381, 2007.PubMedCrossRefGoogle Scholar
  51. 51.
    Ochala, J., D. Lambertz, M. Pousson, F. Goubel, and J. V. Hoecke. Changes in mechanical properties of human plantar flexor muscles in ageing. Exp. Gerontol. 39:349–358, 2004.PubMedCrossRefGoogle Scholar
  52. 52.
    Out, L., T. G. Vrijkotte, A. J. van Soest, and M. F. Bobbert. Influence of the parameters of a human triceps surae muscle model on the isometric torque–angle relationship. J. Biomech. Eng. 118:17–25, 1996.PubMedCrossRefGoogle Scholar
  53. 53.
    Rugg, S. G., R. J. Gregor, B. R. Mandelbaum, and L. Chiu. In vivo moment arm calculations at the ankle using magnetic resonance imaging (MRI). J. Biomech. 23:495–501, 1990.PubMedCrossRefGoogle Scholar
  54. 54.
    Scovil, C. Y., and J. L. Ronsky. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39:2055–2063, 2006.PubMedCrossRefGoogle Scholar
  55. 55.
    Shao, Q., D. N. Bassett, K. Manal, and T. S. Buchanan. An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput. Biol. Med. 39:1083–1088, 2009.PubMedCrossRefGoogle Scholar
  56. 56.
    Simoneau, E., A. Martin, and J. Van Hoecke. Effects of joint angle and age on ankle dorsi- and plantar-flexor strength. J. Electromyogr. Kinesiol. 17:307–316, 2007.PubMedCrossRefGoogle Scholar
  57. 57.
    Spoor, C. W., J. L. van Leeuwen, W. J. van der Meulen, and A. Huson. Active force–length relationship of human lower-leg muscles estimated from morphological data: a comparison of geometric muscle models. Eur. J. Morphol. 29:137–160, 1991.PubMedGoogle Scholar
  58. 58.
    Storn, R., and K. Price. Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, 1995.Google Scholar
  59. 59.
    Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125:70–77, 2003.PubMedCrossRefGoogle Scholar
  60. 60.
    Toursel, T., L. Stevens, and Y. Mounier. Evolution of contractile and elastic properties of rat soleus muscle fibres under unloading conditions. Exp. Physiol. 84:93–107, 1999.PubMedGoogle Scholar
  61. 61.
    Wickiewicz, T. L., R. R. Roy, P. L. Powell, and V. R. Edgerton. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 179:275–283, 1983.PubMedCrossRefGoogle Scholar
  62. 62.
    Wilkie, D. R. The relation between force and velocity in human muscle. J. Physiol. 110:249–280, 1950.Google Scholar
  63. 63.
    Winters, J. M. Hill-based muscle models: a systems engineering perspective. In: Multiple Muscle Systems: Biomechanics and Movement Organization, edited by J. M. Winters, and S. L.-Y. Woo. New York: Springer, 1990, pp. 69–93.Google Scholar
  64. 64.
    Woittiez, R. D., P. A. Huijing, and R. H. Rozendal. Influence of muscle architecture on the length-force diagram. A model and its verification. Pflugers Arch. 397:73–74, 1983.PubMedCrossRefGoogle Scholar
  65. 65.
    Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Biomechanics Laboratory, Department of KinesiologyUniversity of Massachusetts AmherstAmherstUSA
  2. 2.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations