Annals of Biomedical Engineering

, Volume 40, Issue 2, pp 408–421 | Cite as

The Role of Lymphatics in Cancer as Assessed by Near-Infrared Fluorescence Imaging

  • John C. RasmussenEmail author
  • Sunkuk Kwon
  • Eva M. Sevick-Muraca
  • Janice N. Cormier


The lymphatic system is the secondary circulatory system responsible for fluid homeostasis and protein transport in the body. In addition, because the lymphatic system provides a primary pathway for cancer metastasis, lymph node involvement is routinely used as a determinant in cancer staging. Despite their importance, the lymphatics remain poorly understood, in part because of the historic lack of imaging modalities with sufficient spatial and/or temporal resolution to visualize the fine lymphatic structure and subtle contractile function. In recent years, near-infrared fluorescence (NIRF) imaging has emerged as a new imaging modality to non-invasively visualize the lymphatics and assess contractile lymphatic function in humans following administration of microdose amounts of a NIRF contrast agent. In this contribution, we first review NIRF imaging and its clinical application in sentinel lymph node mapping, intraoperative guidance, and assessing the architecture and contractile function of the lymphatics in health and in cancer-related lymphedema. We then present recent NIRF lymphatic imaging for non-invasive assessment of lymphatics both in preclinical melanoma models and in human subjects with melanoma.


Imaging Near-infrared fluorescence Lymphatic Metastasis Lymphangiogenesis Optics 



Indocyanine green




Near-infrared fluorescence


Magnetic resonance imaging


Charge coupled device


Positron emission tomography


X-ray computed tomography


Post implantation


Lymph node


Sentinel lymph node


Manual lymphatic drainage


Gadobenate dimeglumine


Region of interest


Fetal bovine serum


Investigational new drug application


Institutional review board


Food and Drug Administration


Intensified charge coupled device



The authors acknowledge I-Chih Tan and Banghe Zhu for their technical contributions and Melissa B. Aldrich, Kristen E. Adams, Chinmay Darne, Caroline E. Fife, Renie Guilliod, Milton V. Marshall, Erik A. Maus, Latisha A. Smith, I-Chih Tan, and Banghe Zhu for insightful discussions and participation in the clinical studies. This work was supported in parts by grants from the U.S. National Institutes of Health, National Cancer Institute (R01 CA 128919), the National Cancer Institute Network for Translational Research (U54 CA136404), and the National Heart, Lung, and Blood Institute (R01 HL092923).

Conflict of interest

The authors report no financial conflicts of interest.

Supplementary material

10439_2011_476_MOESM1_ESM.avi (3.1 mb)
Supplementary material 1 (AVI 3149 kb)


  1. 1.
    Achen, M. G., G. B. Mann, and S. A. Stacker. Targeting lymphangiogenesis to prevent tumour metastasis. Br. J. Cancer 94(10):1355–1360, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams, K. E., S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J. Biomed. Opt. 12(2):024017, 2007.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, K. E., J. C. Rasmussen, C. Darne, I.-C. Tan, M. B. Aldrich, M. V. Marshall, C. E. Fife, E. A. Maus, L. A. Smith, R. Guilloid, S. Hoy, and E. M. Sevick-Muraca. Direct evidence of improved lymphatic function following treatment with an advanced pneumatic compression device. Biomed. Opt. Express 1(1):114–125, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Barrett, T., P. L. Choyke, and H. Kobayashi. Imaging of the lymphatic system: new horizons. Contrast Media Mol. Imaging 1(6):230–245, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Corlu, A., R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Express. 15(11):6696–6716, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Cormier, J. N., R. L. Askew, K. S. Mungovan, Y. Xing, M. I. Ross, and J. M. Armer. Lymphedema beyond breast cancer. Cancer 116(22):5138–5149, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Dadras, S. S., B. Lange-Asschenfeldt, P. Velasco, L. Nguyen, A. Vora, A. Muzikansky, K. Jahnke, A. Hauschild, S. Hirakawa, M. C. Mihm, and M. Detmar. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod. Pathol. 18(9):1232–1242, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Davies-Venn, C., B. Angermiller, N. Wilganowski, P. Ghosh, B. Harvey, G. Wu, S. Kwon, M. Aldrich, and E. Sevick-Muraca. Albumin-binding domain conjugate for near-infrared fluorescence lymphatic imaging. Mol. Imaging Biol. doi: 10.1007/s11307-011-0499-x.
  9. 9.
    Eichholz, A., S. Merchant, and A. M. Gaya. Anti-angiogenesis therapies: their potential in cancer management. OncoTargets Ther. 3(1):69–82, 2010.Google Scholar
  10. 10.
    Florey, H. Observations on the contractility of lacteals: part I. J. Physiol. 62(3):267–272, 1927.PubMedGoogle Scholar
  11. 11.
    Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21):1182–1186, 1971.PubMedCrossRefGoogle Scholar
  12. 12.
    Fujiwara, M., T. Mizukami, A. Suzuki, and H. Fukamizu. Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J. Plast. Reconstr. Aesthet. Surg. 62:e373–e378, 2008.PubMedCrossRefGoogle Scholar
  13. 13.
    Godavarty, A., E. M. Sevick-Muraca, and M. J. Eppstein. Three-dimensional fluorescence lifetime tomography. Med. Phys. 32(4):992–1000, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Guidance for Industry, Investigators, and Reviewers: Exploratory IND Studies. In: U.S. Department of Health and Human Services, Food and Drug Administration CDER, editors. Rockville, MD ed2006.Google Scholar
  15. 15.
    Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100(1):57–70, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Harrell, M. I., B. M. Iritani, and A. Ruddell. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol. 170(2):774–786, 2007.PubMedCrossRefGoogle Scholar
  17. 17.
    Hirakawa, S., L. F. Brown, S. Kodama, K. Paavonen, K. Alitalo, and M. Detmar. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Houston, J. P., S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca. Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe. J. Biomed. Opt. 10(5):054010, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Jain, R. K. Antiangiogenic therapy for cancer: current and emerging concepts. Anglais 19(4 Suppl 3):7–16, 2005.Google Scholar
  20. 20.
    Joshi, A., W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca. Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection. Med. Phys. 33(5):1299–1310, 2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Kitai, T., T. Inomoto, M. Miwa, and T. Shikayama. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12(3):211–215, 2005.PubMedCrossRefGoogle Scholar
  22. 22.
    Kwon, S., and E. M. Sevick-Muraca. Noninvasive quantitative imaging of lymph function in mice. Lymphat. Res. Biol. 5(4):219–231, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Kwon, S., and E. M. Sevick-Muraca. Functional lymphatic imaging in tumor-bearing mice. J. Immunol. Methods 360(1–2):167–172, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Kwon, S., and E. M. Sevick-Muraca. Mouse phenotyping with near-infrared fluorescence lymphatic imaging. Biomed. Opt. Express 2(6):1403–1411, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, A. C., M. R. Keshtgar, W. A. Waddington, and P. J. Ell. The role of dynamic imaging in sentinel lymph node biopsy in breast cancer. Eur. J. Cancer 38(6):784–787, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu, N. F., Q. Lu, Z. H. Jiang, C. G. Wang, and J. G. Zhou. Anatomic and functional evaluation of the lymphatics and lymph nodes in diagnosis of lymphatic circulation disorders with contrast magnetic resonance lymphangiography. J. Vasc. Surg. 49(4):980–987, 2009.PubMedCrossRefGoogle Scholar
  27. 27.
    Lucarelli, R. T., M. Ogawa, N. Kosaka, B. Turkbey, H. Kobayashi, and P. L. Choyke. New approaches to lymphatic imaging. Lymphat. Res. Biol. 7(4):205–214, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Marshall, M. V., D. Draney, E. M. Sevick-Muraca, and D. M. Olive. Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol. 12(6):583–594, 2010.PubMedCrossRefGoogle Scholar
  29. 29.
    Marshall, M. V., J. C. Rasmussen, I.-C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca. Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg. Oncol. J. 2:12–25, 2010.CrossRefGoogle Scholar
  30. 30.
    Maus, E. A., I. C. Tan, J. C. Rasmussen, M. V. Marshall, C. E. Fife, L. A. Smith, R. Guilliod, and E. M. Sevick-Muraca. Near-infrared fluorescence imaging of lymphatics in head and neck lymphedema. Head Neck. doi: 10.1002/hed.21538.
  31. 31.
    Miyashiro, I., N. Miyoshi, M. Hiratsuka, K. Kishi, T. Yamada, M. Ohue, H. Ohigashi, M. Yano, O. Ishikawa, and S. Imaoka. Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging. Ann. Surg. Oncol. 15(6):1640–1643, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Norrmen, C., T. Tammela, T. V. Petrova, and K. Alitalo. Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351, 2011.PubMedCrossRefGoogle Scholar
  33. 33.
    Ntziachristos, V., A. G. Yodh, M. Schnall, and B. Chance. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97(6):2767–2772, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Ogasawara, Y., H. Ikeda, M. Takahashi, K. Kawasaki, and H. Doihara. Evaluation of breast lymphatic pathways with indocyanine green fluorescence imaging in patients with breast cancer. World J. Surg. 32(9):1924–1929, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Ogata, F., R. Azuma, M. Kikuchi, I. Koshima, and Y. Morimoto. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling. Ann. Plast. Surg. 58(6):652–655, 2007.PubMedCrossRefGoogle Scholar
  36. 36.
    Ogata, F., M. Narushima, M. Mihara, R. Azuma, Y. Morimoto, and I. Koshima. Intraoperative lymphography using indocyanine green dye for near-infrared fluorescence labeling in lymphedema. Ann. Plast. Surg. 59(2):180–184, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Oremus, A., K. Walker, I. Dayes, and P. Raina. Diagnosis and treatment of secondary lymphedema: prepared by McMaster University Evidence-based Practice Center for Agency for Healthcare Research and Quality; Draft version dated October 19, 2009.Google Scholar
  38. 38.
    Polom, K., D. Murawa, Y.-s. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa. Current trends and emerging future of indocyanine green usage in surgery and oncology. Cancer 117(21):4812–4822, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Proulx, S. T., P. Luciani, S. Derzsi, M. Rinderknecht, V. Mumprecht, J.-C. Leroux, and M. Detmar. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res. 70(18):7053–7062, 2010.PubMedCrossRefGoogle Scholar
  40. 40.
    Qian, C. N., B. Berghuis, G. Tsarfaty, M. Bruch, E. J. Kort, J. Ditlev, I. Tsarfaty, E. Hudson, D. G. Jackson, D. Petillo, J. D. Chen, J. H. Resau, and B. T. Teh. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 66(21):10365–10376, 2006.PubMedCrossRefGoogle Scholar
  41. 41.
    Radhakrishnan, K., and S. G. Rockson. The clinical spectrum of lymphatic disease. Ann. N. Y. Acad. Sci. 1131(1):155–184, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Ran, S., L. Volk, K. Hall, and M. J. Flister. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology 17(4):229–251, 2010.PubMedCrossRefGoogle Scholar
  43. 43.
    Rasmussen, J. C., I. C. Tan, M. V. Marshall, K. E. Adams, S. Kwon, C. E. Fife, E. A. Maus, L. Smith, K. R. Covington, and E. M. Sevick-Muraca. Human lymphatic architecture and dynamic transport imaged using near-infrared fluorescence. Transl. Oncol. 3(6):362–372, 2010.PubMedGoogle Scholar
  44. 44.
    Rasmussen, J. C., I. C. Tan, M. V. Marshall, C. E. Fife, and E. M. Sevick-Muraca. Lymphatic imaging in humans with near-infrared fluorescence. Curr. Opin. Biotechnol. 20(1):74–82, 2009.PubMedCrossRefGoogle Scholar
  45. 45.
    Rinderknecht, M., and M. Detmar. Tumor lymphangiogenesis and melanoma metastasis. J. Cell. Physiol. 216(2):347–354, 2008.PubMedCrossRefGoogle Scholar
  46. 46.
    Schaafsma, B. E., J. S. D. Mieog, M. Hutteman, J. R. van der Vorst, P. J. K. Kuppen, C. W. G. M. Löwik, J. V. Frangioni, C. J. H. van de Velde, and A. L. Vahrmeijer. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 104(3):323–332, 2011.PubMedCrossRefGoogle Scholar
  47. 47.
    Sevick-Muraca, E. M., R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad. Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246(3):734–741, 2008.PubMedCrossRefGoogle Scholar
  48. 48.
    Sharma, R., W. Wang, J. C. Rasmussen, A. Joshi, J. P. Houston, K. E. Adams, A. Cameron, S. Ke, S. Kwon, M. E. Mawad, and E. M. Sevick-Muraca. Quantitative imaging of lymph function. Am. J. Physiol. Heart Circ. Physiol. 292(6):H3109–H3118, 2007.PubMedCrossRefGoogle Scholar
  49. 49.
    Smith, R. O. Lymphatic contractility. J. Exp. Med. 90(5):497–509, 1949.PubMedCrossRefGoogle Scholar
  50. 50.
    Stacker, S. A., M. G. Achen, L. Jussila, M. E. Baldwin, and K. Alitalo. Metastasis: lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2(8):573–583, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Stuker, F., J. Ripoll, and M. Rudin. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3(2):229–274, 2011.CrossRefGoogle Scholar
  52. 52.
    Tagaya, N., R. Yamazaki, A. Nakagawa, A. Abe, K. Hamada, K. Kubota, and T. Oyama. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am. J. Surg. 195(6):850–853, 2008.PubMedCrossRefGoogle Scholar
  53. 53.
    Tammela, T., A. Saaristo, T. Holopainen, S. Yla-Herttuala, L. C. Andersson, S. Virolainen, I. Immonen, and K. Alitalo. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med. 3(69):69ra11, 2011.PubMedCrossRefGoogle Scholar
  54. 54.
    Tan, I. C., E. A. Maus, J. C. Rasmussen, M. V. Marshall, K. E. Adams, C. E. Fife, L. A. Smith, W. Chan, and E. M. Sevick-Muraca. Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging. Arch. Phys. Med. Rehabil. 92(5):756–764.e1, 2011.PubMedCrossRefGoogle Scholar
  55. 55.
    Tanaka, E., H. S. Choi, H. Fujii, M. G. Bawendi, and J. V. Frangioni. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann. Surg. Oncol. 13(12):1671–1681, 2006.PubMedCrossRefGoogle Scholar
  56. 56.
    Thompson, A. B., and E. M. Sevick-Muraca. Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy. J. Biomed. Opt. 8(1):111–120, 2003.PubMedCrossRefGoogle Scholar
  57. 57.
    Unno, N., K. Inuzuka, M. Suzuki, N. Yamamoto, D. Sagara, M. Nishiyama, and H. Konno. Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema. J. Vasc. Surg. 45(5):1016–1021, 2007.PubMedCrossRefGoogle Scholar
  58. 58.
    Unno, N., M. Nishiyama, M. Suzuki, N. Yamamoto, K. Inuzuka, D. Sagara, H. Tanaka, and H. Konno. Quantitative lymph imaging for assessment of lymph function using indocyanine green fluorescence lymphography. Eur. J. Vasc. Endovasc. Surg. 36(2):230–236, 2008.PubMedCrossRefGoogle Scholar
  59. 59.
    Yuan, Z., L. Chen, Q. Luo, J. Zhu, H. Lu, and R. Zhu. The role of radionuclide lymphoscintigraphy in extremity lymphedema. Ann. Nucl. Med. 20(5):341–344, 2006.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang, F., G. Niu, G. Lu, and X. Chen. Preclinical lymphatic imaging. Mol. Imaging Biol. 13(4):599–612, 2011.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou, Q., R. Wood, E. M. Schwarz, Y.-J. Wang, and L. Xing. Near-infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice. Arthritis Rheum. 62(7):1881–1889, 2010.PubMedGoogle Scholar
  62. 62.
    Zhu, B., and E. M. Sevick-Muraca. Minimizing excitation light leakage and maximizing measurement sensitivity for molecular imaging with near-infrared fluorescence. J. Innov. Opt. Health Sci. 4(3):301–307, 2011.CrossRefGoogle Scholar
  63. 63.
    Zhu, B., I.-C. Tan, J. C. Rasmussen, and E. M. Sevick-Muraca. Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach. Technol. Cancer Res. Treat. (in press).Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • John C. Rasmussen
    • 1
    Email author
  • Sunkuk Kwon
    • 1
  • Eva M. Sevick-Muraca
    • 1
  • Janice N. Cormier
    • 2
  1. 1.Center for Molecular Imaging, The Brown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center, HoustonHoustonUSA
  2. 2.The University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations