Annals of Biomedical Engineering

, Volume 40, Issue 4, pp 966–975 | Cite as

Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties

  • Alberto RainerEmail author
  • Sara M. Giannitelli
  • Dino Accoto
  • Stefano De Porcellinis
  • Eugenio Guglielmelli
  • Marcella Trombetta


Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.


Computer-aided tissue engineering Additive manufacturing Finite element analysis Biomimetic design Load-adaptive scaffold architecturing 



This work was partially supported by University Campus Bio-Medico di Roma under the CIR Young Investigator Research Grant.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Abbah, S. A., C. X. Lam, D. W. Hutmacher, J. C. Goh, and H.-K. Wong. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27:3964–3972, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Almeida, H. A., and P. J. Bartolo. Virtual topological optimisation of scaffolds for rapid prototyping. Med. Eng. Phys. 32:775–782, 2010.CrossRefGoogle Scholar
  4. 4.
    Bartolo, P. J., C. K. Chua, H. A. Almeida, S. M. Chou, and A. S. C. Lim. Biomanufacturing for tissue engineering: present and future trends. Virtual Phys. Prototyp. 4:203–216, 2009.CrossRefGoogle Scholar
  5. 5.
    Cahill, S., S. Lohfeld, and P. E. McHugh. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 20:1255–1262, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheah, C.-M., C.-K. Chua, K.-F. Leong, C.-H. Cheong, and M.-W. Naing. Automatic algorithm for generating complex polyhedral scaffolds for tissue engineering. Tissue Eng. 10:595–610, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, Z., Z. Su, S. Ma, X. Wu, and Z. Luo. Biomimetic modeling and three-dimension reconstruction of the artificial bone. Comput. Methods Programs Biomed. 88:123–130, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheung, G., P. Zalzal, M. Bhandari, J. K. Spelt, and M. Papini. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med. Eng. Phys. 26:93–108, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Eshraghi, S., and S. Das. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6:2467–2476, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge University Press: Cambridge, 532 pp, 1999.Google Scholar
  11. 11.
    Hobbie, R. K., and B. J. Roth. Intermediate Physics for Medicine and Biology. Springer: New York, 575 pp, 2007.Google Scholar
  12. 12.
    Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Hutmacher, D. W., T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55:203–216, 2001.PubMedCrossRefGoogle Scholar
  14. 14.
    Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Jones, J. R., and L. L. Hench. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7:301–307, 2003.CrossRefGoogle Scholar
  16. 16.
    Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C. 23:611–620, 2003.CrossRefGoogle Scholar
  17. 17.
    Keaveny, T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, and W. C. Hayes. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 27:1127–1136, 1994.PubMedCrossRefGoogle Scholar
  18. 18.
    Koch, J. C. The laws of bone architecture. Am. J. Anat. 21:177–298, 1917.CrossRefGoogle Scholar
  19. 19.
    Lacroix, D., J. A. Planell, and P. J. Prendergast. Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367:1993–2009, 2009.CrossRefGoogle Scholar
  20. 20.
    Landau, D. L., and E. M. Lifshitz. Theory of Elasticity. Oxford: Butterworth Heinemann, 1986; (187 pp).Google Scholar
  21. 21.
    Lee, C. H., J. L. Cook, A. Mendelson, E. K. Moioli, H. Yao, and J. J. Mao. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376:440–448, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623–636, 2004.PubMedCrossRefGoogle Scholar
  23. 23.
    McIntosh, L., J. M. Cordell, and A. J. Wagoner Johnson. Impact of bone geometry on effective properties of bone scaffolds. Acta Biomater. 5:680–692, 2009.PubMedCrossRefGoogle Scholar
  24. 24.
    Melchels, F. P. W., K. Bertoldi, R. Gabbrielli, A. H. Velders, J. Feijen, and D. W. Grijpma. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31:6909–6916, 2010.PubMedCrossRefGoogle Scholar
  25. 25.
    Olivares, A. L., E. Marsal, J. A. Planell, and D. Lacroix. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142–6149, 2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Pálfi, P. Locally orthotropic femur model. J. Comput. Appl. Mech. 5:103–115, 2002.Google Scholar
  27. 27.
    Pandithevan, P., and G. Saravana Kumar. Reconstruction of subject-specific human femoral bone model with cortical porosity data using macro-CT. Virtual Phys. Prototyp. 4:115–129, 2009.CrossRefGoogle Scholar
  28. 28.
    Pandithevan, P., and G. Saravana Kumar. Finite element analysis of a personalized femoral scaffold with designed microarchitecture. Proc. IMechE H J. Eng. Med. 224:877–889, 2010.CrossRefGoogle Scholar
  29. 29.
    Papini, M., R. Zdero, E. H. Schemitsch, and P. Zalzal. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J. Biomech. Eng. 129:12–19, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Peltola, S. M., F. P. W. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.PubMedCrossRefGoogle Scholar
  31. 31.
    Rezwan, K., Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005–1014, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Shao, X., J. C. Goh, D. W. Hutmacher, E. H. Lee, and G. Zigang. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 12:1539–1551, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Shipley, R. J., G. W. Jones, R. J. Dyson, B. G. Sengers, C. L. Bailey, C. J. Catt, C. P. Please, and J. Malda. Design criteria for a printed tissue engineering construct: a mathematical homogenization approach. J. Theor. Biol. 259:489–502, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Shor, L., S. Guceri, R. Chang, J. Gordon, Q. Kang, L. Hartsock, Y. An, and W. Sun. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1:015003, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Simpson, R. L., F. E. Wiria, A. A. Amis, C. K. Chua, K. F. Leong, U. N. Hansen, M. Chandrasekaran, and M. W. Lee. Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. B Appl. Biomater. 84:17–25, 2008.PubMedGoogle Scholar
  37. 37.
    Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7:1009–1018, 2011.PubMedCrossRefGoogle Scholar
  38. 38.
    Starly, B., W. Lau, T. Bradbury, and W. Sun. Internal architecture design and freeform fabrication of tissue replacement structures. Computer-Aided Des. 38:115–124, 2006.CrossRefGoogle Scholar
  39. 39.
    Sun, W., B. Starly, A. Darling, and C. Gomez. Computer aided tissue engineering application to biomimetic modeling and design of tissue scaffold. Biotechnol. Appl. Biochem. 39:49–58, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Swieszkowski, W., B. H. Tuan, K. J. Kurzydlowski, and D. W. Hutmacher. Repair and regeneration of osteochondral defects in the articular joints. Biomol. Eng. 24:489–495, 2007.PubMedCrossRefGoogle Scholar
  41. 41.
    Tellis, B. C., J. A. Szivek, C. L. Bliss, D. S. Margolis, R. K. Vaidyanathan, and P. Calvert. Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C Mater. Biol. Appl. 28:171–178, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Viceconti, M. A comparative study on different methods of automatic mesh generation on human femurs. Med. Eng. Phys. 20:1–10, 1998.PubMedCrossRefGoogle Scholar
  43. 43.
    Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Alberto Rainer
    • 1
    • 2
    Email author
  • Sara M. Giannitelli
    • 1
  • Dino Accoto
    • 3
  • Stefano De Porcellinis
    • 2
  • Eugenio Guglielmelli
    • 3
  • Marcella Trombetta
    • 1
  1. 1.Tissue Engineering Laboratory, CIR—Center for Integrated ResearchUniversità Campus Bio-Medico di RomaRomeItaly
  2. 2.Biomatica srlRomeItaly
  3. 3.Biomedical Robotics and Biomicrosystems Laboratory, CIR-Center for Integrated ResearchUniversità Campus Bio-Medico di RomaRomeItaly

Personalised recommendations