Annals of Biomedical Engineering

, Volume 40, Issue 5, pp 987–995 | Cite as

Kinematic Modeling-based Left Ventricular Diastatic (Passive) Chamber Stiffness Determination with In-Vivo Validation



The slope of the diastatic pressure–volume relationship (D-PVR) defines passive left ventricular (LV) stiffness \( \mathcal{K}.\) Although \( \mathcal{K} \) is a relative measure, cardiac catheterization, which is an absolute measurement method, is used to obtain the former. Echocardiography, including transmitral flow velocity (Doppler E-wave) analysis, is the preferred quantitative diastolic function (DF) assessment method. However, E-wave analysis can provide only relative, rather than absolute pressure information. We hypothesized that physiologic mechanism-based modeling of E-waves allows derivation of the D-PVRE-wave whose slope, \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \), provides E-wave-derived diastatic, passive chamber stiffness. Our kinematic model of filling and Bernoulli’s equation were used to derive expressions for diastatic pressure and volume on a beat-by-beat basis, thereby generating D-PVRE-wave, and \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \). For validation, simultaneous (conductance catheter) PV and echocardiographic E-wave data from 30 subjects (444 total cardiac cycles) having normal LV ejection fraction (LVEF) were analyzed. For each subject (15 beats average) model-predicted \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \) was compared to experimentally measured \( \mathcal{K}_{\text{CATH}} \) via linear regression yielding as follows: \( \mathcal{K}_{{\text{E-}}{\text{wave}}} = \alpha {\mathcal{K}}_{\text{CATH}} + b\;(R^{2} = 0.92), \) where, α = 0.995 and b = 0.02. We conclude that echocardiographically determined diastatic passive chamber stiffness, \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \), provides an excellent estimate of simultaneous, gold standard (PV)-defined diastatic stiffness, \( \mathcal{K}_{\text{CATH}} \). Hence, in chambers at diastasis, passive LV stiffness can be accurately determined by means of suitable analysis of Doppler E-waves (transmitral flow).


Diastolic function Kinematic modeling Left ventricle Diastatic stiffness Echocardiography Hemodynamics 



This study was supported in part by the Alan A. and Edith L. Wolff Charitable Trust, St. Louis, and the Barnes-Jewish Hospital Foundation, St. Louis. The authors thank sonographer Peggy Brown for expert echocardiographic data acquisition, and the staff of the BJH Cardiovascular Procedure Center’s Cardiac Catheterization Laboratory for their assistance.


  1. 1.
    Appleton, C. P., L. K. Hatle, and R. L. Popp. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J. Am. Coll. Cardiol. 12:426–440, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Bauman, L., C. S. Chung, M. Karamanoglu, and S. J. Kovács. The peak atrioventricular pressure gradient to transmitral flow relation: kinematic model prediction with in vivo validation. J. Am. Soc. Echocardiogr. 17:839–844, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Chung, C. S., D. M. Ajo, and S. J. Kovács. Isovolumic pressure-to-early rapid filling decay rate relation: model-based derivation and validation via simultaneous catheterization echocardiography. J. Appl. Physiol. 100:528–534, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Chung, C. S., M. Karamanoglu, and S. J. Kovács. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am. J. Physiol. Heart Circ. Physiol. 287:H2003–H2008, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Chung, C. S., and S. J. Kovács. Physical determination of left ventricular isovolumic pressure decline: model prediction with in vivo validation. Am. J. Physiol. 294:H1589–H1596, 2008.Google Scholar
  7. 7.
    Chung, C. S., A. Strunc, R. Oliver, and S. J. Kovács. Diastolic ventricular-vascular stiffness and relaxation relation: elucidation of coupling via pressure phase plane-derived indexes. Am. J. Physiol. Heart Circ. Physiol. 291:H2415–H2423, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Courtois, M., S. J. Kovács, and P. A. Ludbrook. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78:661–671, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Dent, C. L., A. W. Bowman, M. J. Scott, J. S. Allen, J. B. Lisauskas, M. Janif, S. A. Wickline, and S. J. Kovács. Echocardiographic characterization of fundamental mechanisms of abnormal diastolic filling in diabetic rats with a parametrized diastolic filling formalism. J. Am. Soc. Echocardiogr. 14:1166–1172, 2001.PubMedCrossRefGoogle Scholar
  10. 10.
    Dumont, C. A., L. Monserrat, J. Peteiro, R. Soler, E. Rodriguez, A. Bouzas, X. Fernández, R. Pérez, B. Bouzas, and A. Castro-Beiras. Relation of left ventricular chamber stiffness at rest to exercise capacity in hypertrophic cardiomyopathy. Am. J. Cardiol. 99:1454–1457, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Falsetti, H. L., M. S. Verani, C. J. Chen, and J. A. Cramer. Regional pressure differences in the left ventricle. Catheter Cardiovasc. Diag. 6:123–134, 1980.CrossRefGoogle Scholar
  12. 12.
    Firstenberg, M. S., P. M. Vandervoort, N. L. Greenberg, N. G. Smedira, P. M. McCarthy, M. J. Garcia, and J. D. Thomas. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling. J. Am. Coll. Cardiol. 36:1942–1949, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Garcia, M. J., J. D. Thomas, and A. L. Klein. New Doppler echocardiographic applications for the study of diastolic dysfunction. J. Am. Coll. Cardiol. 32:865–875, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    Hall, A. F., and S. J. Kovács. Processing parameter effects on the robustness of the solution to the “Inverse Problem” of diastole from Doppler echocardiographic data. In: 15th Annual International Conference, IEEE Engineering in Medicine & Biology Society, 1993, pp. I385–I387.Google Scholar
  15. 15.
    Hall, A. F., and S. J. Kovács. Automated method for characterization of diastolic transmitral Doppler velocity contours: early rapid filling. Ultrasound Med. Biol. 20:107–116, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Haney, S., D. Sur, and Z. Xu. Diastolic heart failure: a review and primary care perspective. J. Am. Board Fam. Pract. 18:189–198, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Kass, D. A. Assessment of diastolic dysfunction: invasive modalities. Cardiol. Clin. 18:571–586, 2000.PubMedCrossRefGoogle Scholar
  18. 18.
    Kass, D. A., J. G. F. Bronzwaer, and W. J. Paulus. What mechanism underline diastolic dysfunction in heart failure? Circ. Res. 94:1533–1542, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Khouri, S. J., G. T. Maly, D. D. Suh, and T. E. Walsh. A practical approach to the echocardiographic evaluation of diastolic function. J. Am. Soc. Echocardiogr. 17:290–297, 2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Kovács, S. J., B. Barzilai, and J. E. Pérez. Evaluation of diastolic function with Doppler echocardiography: the PDF formalism. Am. J. Physiol. 87:H178–H187, 1987.Google Scholar
  21. 21.
    Kovács, S. J., M. D. McQueen, and C. S. Peskin. Modelling cardiac fluid dynamics and diastolic function. Philos. Trans. R. Soc. A 359:1299–1314, 2001.CrossRefGoogle Scholar
  22. 22.
    Kovács, S. J., J. S. Meisner, and E. L. Yellin. Modeling of diastole. Cardiol. Clin. 18:459–487, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Kovács, S. J., R. Sester, and A. F. Hall. Left ventricular chamber stiffness from model-based image processing of transmitral Doppler E-waves. Coron. Artery Dis. 8:179–187, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Lisauskas, J. B., J. Singh, A. W. Bowman, and S. J. Kovács. Chamber properties from transmitral flow: prediction of average and passive left ventricular diastolic stiffness. J. Appl. Physiol. 91:154–162, 2001.PubMedGoogle Scholar
  25. 25.
    Lisauskas, J. B., J. Singh, M. Courtois, and S. J. Kovács. The relation of the peak Doppler E-wave to peak mitral annulus velocity ratio to diastolic function. Ultrasound Med. Biol. 27:499–507, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Little, W. C., M. Ohno, D. W. Kitzman, J. D. Thomas, and C. P. Cheng. Determination of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling. Circulation 92:1933–1939, 1995.PubMedGoogle Scholar
  27. 27.
    Maeder, M. T., and D. M. Kaye. Heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 53:905–918, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Mossahebi, S., L. Shmuylovich, and S. J. Kovács. The thermodynamics of diastole: kinematic modeling based derivation of the P–V loop to transmitral flow energy relation, with in-vivo validation. Am. J. Physiol. Heart Circ. Physiol. 300:H514–H521, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, A. D. Waggoner, F. A. Flachskampf, P. A. Pellikka, and A. Evangelista. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22(2):107–133, 2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Nishimura, R. A., and A. J. Tajik. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J. Am. Coll. Cardiol. 30:8–18, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Oki, T., T. Tabata, Y. Mishiro, H. Yamada, M. Abe, Y. Onose, T. Wakatsuki, A. Iuchi, and S. Ito. Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in healthy subjects. J. Am. Soc. Echocardiogr. 12:308–313, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Omens, J., and Y. Fung. Residual strain in rat left ventricle. Circ. Res. 66:37–45, 1990.PubMedGoogle Scholar
  33. 33.
    Riordan, M. M., C. S. Chung, and S. J. Kovács. Diabetes and diastolic function: stiffness and relaxation from transmitral flow. Ultrasound Med. Biol. 31:1589–1596, 2005.PubMedCrossRefGoogle Scholar
  34. 34.
    Shmuylovich, L., and S. J. Kovács. E-wave deceleration time may not provide accurate determination of left ventricular chamber stiffness if left ventricular relaxation/viscoelasticity is unknown. Am. J. Physiol. Heart Circ. Physiol. 292:H2712–H2720, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Støylen, A., S. Slordahl, G. K. Skjelvan, A. Heimdal, and T. Skjaerpe. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus. J. Am. Soc. Echocardiogr. 14:264–274, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.PubMedGoogle Scholar
  37. 37.
    Thomas, J. D., J. B. Newell, C. Y. Choong, and A. E. Weyman. Physical and physiological determinants of transmitral velocity: numerical analysis. Am. J. Physiol. 260:H1718–H1731, 1991.PubMedGoogle Scholar
  38. 38.
    Yellin, E. L. Mitral valve motion, intracardiac dynamics and flow pattern modelling: physiology and pathophysiology. In: Advances in Cardiovascular Physics, edited by D. N. Ghista. Basel: Karger, 1983, pp. 137–161.Google Scholar
  39. 39.
    Zhang, W., C. S. Chung, L. Shmuylovich, and S. J. Kovács. Viewpoint: is left ventricular volume during diastasis the real equilibrium volume and, what is its relationship to diastolic suction? J. Appl. Physiol. 105:1012–1014, 2008.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang, W., and S. J. Kovács. The diastatic pressure–volume relationship is not the same as the end-diastolic pressure-volume relationship. Am. J. Physiol. Heart Circ. Physiol. 294(6):H2750–H2760, 2008.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang, W., L. Shmuylovich, and S. J. Kovács. The E-wave delayed relaxation pattern to LV pressure contour relation: model-based prediction with in-vivo validation. Ultrasound Med. Biol. 36:497–511, 2010.PubMedCrossRefGoogle Scholar
  42. 42.
    Zile, M. R., and D. L. Brutsaert. New concepts in diastolic dysfunction and diastolic heart failure: part I. Circulation. 105:1387–1393, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of MedicineWashington University Medical CenterSt. LouisUSA
  2. 2.Department of Physics, College of Arts and SciencesWashington UniversitySt. LouisUSA

Personalised recommendations