Annals of Biomedical Engineering

, Volume 40, Issue 6, pp 1211–1227 | Cite as

Organs-on-a-Chip: A Focus on Compartmentalized Microdevices

  • Christopher Moraes
  • Geeta Mehta
  • Sasha Cai Lesher-Perez
  • Shuichi Takayama


Advances in microengineering technologies have enabled a variety of insights into biomedical sciences that would not have been possible with conventional techniques. Engineering microenvironments that simulate in vivo organ systems may provide critical insight into the cellular basis for pathophysiologies, development, and homeostasis in various organs, while curtailing the high experimental costs and complexities associated with in vivo studies. In this article, we aim to survey recent attempts to extend tissue-engineered platforms toward simulating organ structure and function, and discuss the various approaches and technologies utilized in these systems. We specifically focus on microtechnologies that exploit phenomena associated with compartmentalization to create model culture systems that better represent the in vivo organ microenvironment.


Organ Compartment Microtechnology Microengineering Microenvironment Barrier 


Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Agastin, S., U. B. Giang, Y. Geng, L. A. Delouise, and M. R. King. Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics 5(2):24110, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Albrecht, D. R., G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia. Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3(5):369–375, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson, H., and A. van den Berg. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4(2):98–103, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Berdichevsky, Y., K. J. Staley, and M. L. Yarmush. Building and manipulating neural pathways with microfluidics. Lab Chip 10(8):999–1004, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhowmick, N. A., E. G. Neilson, and H. L. Moses. Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Bilek, A. M., K. C. Dee, and D. P. Gaver, 3rd. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94(2):770–783, 2003.PubMedGoogle Scholar
  7. 7.
    Carraro, A., W. M. Hsu, K. M. Kulig, W. S. Cheung, M. L. Miller, E. J. Weinberg, E. F. Swart, M. Kaazempur-Mofrad, J. T. Borenstein, J. P. Vacanti, and C. Neville. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 10(6):795–805, 2008.PubMedCrossRefGoogle Scholar
  8. 8.
    Cherif, A. H., D. M. Jedlicka, A. Al-Arabi, R. Aron, and S. Verma. Effective understanding of the human body organs: a role-playing activity for deep learning. Am. Biol. Teach. 72(7):447–450, 2010.CrossRefGoogle Scholar
  9. 9.
    Chisari, F. V., N. Fausto, D. Schachter, D. A. Shafritz, I. M. Arias, and J. L. Boyer. The Liver: Biology and Pathobiology (4th ed.). Philadelphia: Lippincott Williams & Wilkins, 2001.Google Scholar
  10. 10.
    Cho, C. H., J. Park, A. W. Tilles, F. Berthiaume, M. Toner, and M. L. Yarmush. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. Biotechniques 48(1):47–52, 2010.PubMedCrossRefGoogle Scholar
  11. 11.
    Choudhury, D., X. Mo, C. Iliescu, L. L. Tan, W. H. Tong, and H. Yu. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. Biomicrofluidics 5(2):22203, 2011.PubMedCrossRefGoogle Scholar
  12. 12.
    Chung, S., R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.PubMedCrossRefGoogle Scholar
  14. 14.
    Cullen, D. K., J. Vukasinovic, A. Glezer, and M. C. Laplaca. Microfluidic engineered high cell density three-dimensional neural cultures. J. Neural Eng. 4(2):159–172, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Domansky, K., W. Inman, J. Serdy, A. Dash, M. H. Lim, and L. G. Griffith. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58, 2010.PubMedCrossRefGoogle Scholar
  16. 16.
    Douville, N. J., P. Zamankhan, Y. C. Tung, R. Li, B. L. Vaughan, C. F. Tai, J. White, P. J. Christensen, J. B. Grotberg, and S. Takayama. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11(4):609–619, 2011.PubMedCrossRefGoogle Scholar
  17. 17.
    Esch, M. B., T. L. King, and M. L. Shuler. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13:55–72, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Fritsche, C. S., O. Simsch, E. J. Weinberg, B. Orrick, C. Stamm, M. R. Kaazempur-Mofrad, J. T. Borenstein, R. Hetzer, and J. P. Vacanti. Pulmonary tissue engineering using dual-compartment polymer scaffolds with integrated vascular tree. Int. J. Artif. Organs 32(10):701–710, 2009.PubMedGoogle Scholar
  19. 19.
    Fujioka, H., S. Takayama, and J. B. Grotberg. Unsteady propagation of a liquid plug in a liquid-lined straight tube. Phys Fluids (1994) 20(6):62104, 2008.CrossRefGoogle Scholar
  20. 20.
    Gao, Y., D. Majumdar, B. Jovanovic, C. Shaifer, P. C. Lin, A. Zijlstra, D. J. Webb, and D. Li. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomed. Microdevices 13(3):539–548, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Gomez-Sjoberg, R., A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79(22):8557–8563, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Goral, V. N., Y. C. Hsieh, O. N. Petzold, J. S. Clark, P. K. Yuen, and R. A. Faris. Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab Chip 10(24):3380–3386, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Grover, W. H., A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors Actuators B 89(3):315–323, 2003.CrossRefGoogle Scholar
  24. 24.
    Gunther, A., S. Yasotharan, A. Vagaon, C. Lochovsky, S. Pinto, J. Yang, C. Lau, J. Voigtlaender-Bolz, and S. S. Bolz. A microfluidic platform for probing small artery structure and function. Lab Chip 10(18):2341–2349, 2010.PubMedCrossRefGoogle Scholar
  25. 25.
    Hardelauf, H., J. P. Frimat, J. D. Stewart, W. Schormann, Y. Y. Chiang, P. Lampen, J. Franzke, J. G. Hengstler, C. Cadenas, L. A. Kunz-Schughart, and J. West. Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11(3):419–428, 2011.PubMedCrossRefGoogle Scholar
  26. 26.
    Hardelauf, H., J. Sisnaiske, A. A. Taghipour-Anvari, P. Jacob, E. Drabiniok, U. Marggraf, J. P. Frimat, J. G. Hengstler, A. Neyer, C. van Thriel, and J. West. High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes. Lab Chip 11(16):2763–2771, 2011.PubMedCrossRefGoogle Scholar
  27. 27.
    He, M., and A. E. Herr. Automated microfluidic protein immunoblotting. Nat. Protoc. 5(11):1844–1856, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Hirschhaeuser, F., H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148(1):3–15, 2010.PubMedCrossRefGoogle Scholar
  29. 29.
    Hsiao, A. Y., Y. S. Torisawa, Y. C. Tung, S. Sud, R. S. Taichman, K. J. Pienta, and S. Takayama. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16):3020–3027, 2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Hsu, W. M., A. Carraro, K. M. Kulig, M. L. Miller, M. Kaazempur-Mofrad, E. Weinberg, F. Entabi, H. Albadawi, M. T. Watkins, J. T. Borenstein, J. P. Vacanti, and C. Neville. Liver-assist device with a microfluidics-based vascular bed in an animal model. Ann. Surg. 252(2):351–357, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu, T. H., J. L. Xiao, Y. W. Tsao, Y. L. Kao, S. H. Huang, W. Y. Liao, and C. H. Lee. Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab Chip 11(10):1808–1814, 2011.PubMedCrossRefGoogle Scholar
  32. 32.
    Huang, C. P., J. Lu, H. Seon, A. P. Lee, L. A. Flanagan, H. Y. Kim, A. J. Putnam, and N. L. Jeon. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9(12):1740–1748, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Huh, D., H. Fujioka, Y. C. Tung, N. Futai, R. Paine, 3rd, J. B. Grotberg, and S. Takayama. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104(48):18886–18891, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Hwa, A. J., R. C. Fry, A. Sivaraman, P. T. So, L. D. Samson, D. B. Stolz, and L. G. Griffith. Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J. 21(10):2564–2579, 2007.PubMedCrossRefGoogle Scholar
  36. 36.
    Jang, K. J., and K. Y. Suh. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Kane, B. J., M. J. Zinner, M. L. Yarmush, and M. Toner. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78(13):4291–4298, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26(1):120–126, 2008.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim, D. H., E. A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K. Y. Suh, L. Tung, and A. Levchenko. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107(2):565–570, 2010.PubMedCrossRefGoogle Scholar
  40. 40.
    Kimura, H., T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746, 2008.PubMedCrossRefGoogle Scholar
  41. 41.
    Kunze, A., M. Giugliano, A. Valero, and P. Renaud. Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32(8):2088–2098, 2011.PubMedCrossRefGoogle Scholar
  42. 42.
    Lecault, V., M. Vaninsberghe, S. Sekulovic, D. J. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8(7):581–586, 2011.PubMedCrossRefGoogle Scholar
  43. 43.
    Leclerc, E., R. Baudoin, A. Corlu, L. Griscom, J. Luc Duval, and C. Legallais. Selective control of liver and kidney cells migration during organotypic cocultures inside fibronectin-coated rectangular silicone microchannels. Biomaterials 28(10):1820–1829, 2007.PubMedCrossRefGoogle Scholar
  44. 44.
    Leclerc, E., B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, and C. Legallaisa. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27(4):586–595, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Lecuit, T., and L. Le Goff. Orchestrating size and shape during morphogenesis. Nature 450(7167):189–192, 2007.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee, P. J., P. J. Hung, and L. P. Lee. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97(5):1340–1346, 2007.PubMedCrossRefGoogle Scholar
  47. 47.
    Li, A. P. In vitro evaluation of human xenobiotic toxicity: scientific concepts and the novel integrated discrete multiple cell co-culture (IdMOC) technology. ALTEX 25(1):43–49, 2008.PubMedGoogle Scholar
  48. 48.
    Li, A. P. The use of the Integrated Discrete Multiple Organ Co-culture (IdMOC) system for the evaluation of multiple organ toxicity. Altern. Lab Anim. 37(4):377–385, 2009.PubMedGoogle Scholar
  49. 49.
    Li, A. P., C. Bode, and Y. Sakai. A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem. Biol. Interact. 150(1):129–136, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu, T., B. Lin, and J. Qin. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip 10(13):1671–1677, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    Lovchik, R. D., F. Bianco, N. Tonna, A. Ruiz, M. Matteoli, and E. Delamarche. Overflow microfluidic networks for open and closed cell cultures on chip. Anal. Chem. 82(9):3936–3942, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Ma, H., T. Liu, J. Qin, and B. Lin. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis 31(10):1599–1605, 2010.PubMedCrossRefGoogle Scholar
  53. 53.
    Mack, P. J., Y. Zhang, S. Chung, V. Vickerman, R. D. Kamm, and G. Garcia-Cardena. Biomechanical Regulation of Endothelium-dependent Events Critical for Adaptive Remodeling. J. Biol. Chem. 284(13):8412–8420, 2009.PubMedCrossRefGoogle Scholar
  54. 54.
    Moraes, C., J. H. Chen, Y. Sun, and C. A. Simmons. Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation. Lab Chip 10(2):227–234, 2010.PubMedCrossRefGoogle Scholar
  55. 55.
    Moraes, C., Y. Sun, and C. A. Simmons. (Micro)managing the mechanical microenvironment. Integr. Biol. (Camb) 3(10):959–971, 2011.CrossRefGoogle Scholar
  56. 56.
    Moraes, C., G. Wang, Y. Sun, and C. A. Simmons. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 31(3):577–584, 2010.PubMedCrossRefGoogle Scholar
  57. 57.
    Nalayanda, D. D., C. Puleo, W. B. Fulton, L. M. Sharpe, T. H. Wang, and F. Abdullah. An open-access microfluidic model for lung-specific functional studies at an air–liquid interface. Biomed. Microdevices 11(5):1081–1089, 2009.CrossRefGoogle Scholar
  58. 58.
    Nilsson, J., M. Evander, B. Hammarstrom, and T. Laurell. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649(2):141–157, 2009.PubMedCrossRefGoogle Scholar
  59. 59.
    Ohashi, K., T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, and Y. Nakajima. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat. Med. 13(7):880–885, 2007.PubMedCrossRefGoogle Scholar
  60. 60.
    Ottesen, E. A., J. W. Hong, S. R. Quake, and J. R. Leadbetter. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467, 2006.PubMedCrossRefGoogle Scholar
  61. 61.
    Paguirigan, A. L., J. P. Puccinelli, X. Su, and D. J. Beebe. Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays. Assay Drug Dev. Technol. 8(5):591–601, 2010.PubMedCrossRefGoogle Scholar
  62. 62.
    Pan, W., W. Chen, and X. Jiang. Microfluidic Western blot. Anal. Chem. 82(10):3974–3976, 2010.PubMedCrossRefGoogle Scholar
  63. 63.
    Park, J., H. Koito, J. Li, and A. Han. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11(6):1145–1153, 2009.PubMedCrossRefGoogle Scholar
  64. 64.
    Park, J., Y. Li, F. Berthiaume, M. Toner, M. L. Yarmush, and A. W. Tilles. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol. Bioeng. 99(2):455–467, 2008.PubMedCrossRefGoogle Scholar
  65. 65.
    Park, J. Y., S. Takayama, and S. H. Lee. Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems. Integr. Biol. (Camb) 2(5–6):229–240, 2010.CrossRefGoogle Scholar
  66. 66.
    Pelosi, P. The forgotten sides of acute lung injury and acute respiratory distress syndrome. Curr. Opin. Crit. Care 14(1):1–2, 2008.PubMedCrossRefGoogle Scholar
  67. 67.
    Price, G. M., K. H. Wong, J. G. Truslow, A. D. Leung, C. Acharya, and J. Tien. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31(24):6182–6189, 2010.PubMedCrossRefGoogle Scholar
  68. 68.
    Rhee, S. W., A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. Patterned cell culture inside microfluidic devices. Lab Chip 5(1):102–107, 2005.PubMedCrossRefGoogle Scholar
  69. 69.
    Sekiya, S., M. Muraoka, T. Sasagawa, T. Shimizu, M. Yamato, and T. Okano. Three-dimensional cell-dense constructs containing endothelial cell-networks are an effective tool for in vivo and in vitro vascular biology research. Microvasc. Res. 80(3):549–551, 2010.PubMedCrossRefGoogle Scholar
  70. 70.
    Shao, J., L. Wu, J. Wu, Y. Zheng, H. Zhao, Q. Jin, and J. Zhao. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9(21):3118–3125, 2009.PubMedCrossRefGoogle Scholar
  71. 71.
    Shein, M., A. Greenbaum, T. Gabay, R. Sorkin, M. David-Pur, E. Ben-Jacob, and Y. Hanein. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed. Microdevices 11(2):495–501, 2009.PubMedCrossRefGoogle Scholar
  72. 72.
    Shimizu, H., K. Ohashi, R. Utoh, K. Ise, M. Gotoh, M. Yamato, and T. Okano. Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30(30):5943–5949, 2009.PubMedCrossRefGoogle Scholar
  73. 73.
    Shin, Y., J. S. Jeon, S. Han, G. S. Jung, S. Shin, S. H. Lee, R. Sudo, R. D. Kamm, and S. Chung. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11(13):2175–2181, 2011.PubMedCrossRefGoogle Scholar
  74. 74.
    Sim, W. Y., S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip 7(12):1775–1782, 2007.PubMedCrossRefGoogle Scholar
  75. 75.
    Sin, A., K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20(1):338–345, 2004.PubMedCrossRefGoogle Scholar
  76. 76.
    Song, J. W., S. P. Cavnar, A. C. Walker, K. E. Luker, M. Gupta, Y. C. Tung, G. D. Luker, and S. Takayama. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4(6):e5756, 2009.PubMedCrossRefGoogle Scholar
  77. 77.
    Song, J. W., W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77(13):3993–3999, 2005.PubMedCrossRefGoogle Scholar
  78. 78.
    Srigunapalan, S., C. Lam, A. R. Wheeler, and C. A. Simmons. A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5(1):13409, 2011.PubMedCrossRefGoogle Scholar
  79. 79.
    Stroock, A. D., and C. Fischbach. Microfluidic culture models of tumor angiogenesis. Tissue Eng. A 16(7):2143–2146, 2010.CrossRefGoogle Scholar
  80. 80.
    Sung, J. H., C. Kam, and M. L. Shuler. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455, 2010.PubMedCrossRefGoogle Scholar
  81. 81.
    Sung, J. H., and M. L. Shuler. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10):1385–1394, 2009.PubMedCrossRefGoogle Scholar
  82. 82.
    Tavana, H., A. Jovic, B. Mosadegh, Q. Y. Lee, X. Liu, K. E. Luker, G. D. Luker, S. J. Weiss, and S. Takayama. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 8(9):736–741, 2009.PubMedCrossRefGoogle Scholar
  83. 83.
    Tavana, H., C. H. Kuo, Q. Y. Lee, B. Mosadegh, D. Huh, P. J. Christensen, J. B. Grotberg, and S. Takayama. Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Langmuir 26(5):3744–3752, 2010.PubMedCrossRefGoogle Scholar
  84. 84.
    Tavana, H., P. Zamankhan, P. J. Christensen, J. B. Grotberg, and S. Takayama. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed. Microdevices 13(4):731–742, 2011.PubMedCrossRefGoogle Scholar
  85. 85.
    Tilles, A. W., F. Berthiaume, M. L. Yarmush, R. G. Tompkins, and M. Toner. Bioengineering of liver assist devices. J. Hepatobiliary Pancreat. Surg. 9(6):686–696, 2002.PubMedCrossRefGoogle Scholar
  86. 86.
    Toda, M., K. Yamamoto, N. Shimizu, S. Obi, S. Kumagaya, T. Igarashi, A. Kamiya, and J. Ando. Differential gene responses in endothelial cells exposed to a combination of shear stress and cyclic stretch. J. Biotechnol. 133(2):239–244, 2008.PubMedCrossRefGoogle Scholar
  87. 87.
    Toh, Y. C., T. C. Lim, D. Tai, G. Xiao, D. van Noort, and H. Yu. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9(14):2026–2035, 2009.PubMedCrossRefGoogle Scholar
  88. 88.
    Toh, Y. C., C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher, and H. Yu. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302–309, 2007.PubMedCrossRefGoogle Scholar
  89. 89.
    Torisawa, Y. S., B. Mosadegh, T. Bersano-Begey, J. M. Steele, K. E. Luker, G. D. Luker, and S. Takayama. Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integr. Biol. (Camb) 2(11–12):680–686, 2010.CrossRefGoogle Scholar
  90. 90.
    Tumarkin, E., L. Tzadu, E. Csaszar, M. Seo, H. Zhang, A. Lee, R. Peerani, K. Purpura, P. W. Zandstra, and E. Kumacheva. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol. 3(6):653–662, 2011.CrossRefGoogle Scholar
  91. 91.
    Unger, M. A., H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116, 2000.PubMedCrossRefGoogle Scholar
  92. 92.
    van der Meer, A. D., K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 298(2):H719–H725, 2010.PubMedCrossRefGoogle Scholar
  93. 93.
    van Midwoud, P. M., M. T. Merema, E. Verpoorte, and G. M. Groothuis. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10(20):2778–2786, 2010.PubMedCrossRefGoogle Scholar
  94. 94.
    Verbridge, S. S., N. W. Choi, Y. Zheng, D. J. Brooks, A. D. Stroock, and C. Fischbach. Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng. A 16(7):2133–2141, 2010.CrossRefGoogle Scholar
  95. 95.
    Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.PubMedCrossRefGoogle Scholar
  96. 96.
    Viravaidya, K., and M. L. Shuler. Incorporation of 3T3–L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20(2):590–597, 2004.PubMedCrossRefGoogle Scholar
  97. 97.
    Viravaidya, K., A. Sin, and M. L. Shuler. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20(1):316–323, 2004.PubMedCrossRefGoogle Scholar
  98. 98.
    Vishwanathan, A., G. Q. Bi, and H. C. Zeringue. Ring-shaped neuronal networks: a platform to study persistent activity. Lab Chip 11(6):1081–1088, 2011.PubMedCrossRefGoogle Scholar
  99. 99.
    Walsh, C. L., B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. McGarry, and N. S. Forbes. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9(4):545–554, 2009.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang, Y., R. Dhopeshwarkar, R. Najdi, M. L. Waterman, C. E. Sims, and N. Allbritton. Microdevice to capture colon crypts for in vitro studies. Lab Chip 10(12):1596–1603, 2010.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang, Y., J. F. Lo, J. E. Mendoza-Elias, A. F. Adewola, T. A. Harvat, K. P. Kinzer, D. Lee, M. Qi, D. T. Eddington, and J. Oberholzer. Application of microfluidic technology to pancreatic islet research: first decade of endeavor. Bioanalysis 2(10):1729–1744, 2010.PubMedCrossRefGoogle Scholar
  102. 102.
    Wei, C. W., J. Y. Cheng, and T. H. Young. Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Biomed. Microdevices 8(1):65–71, 2006.PubMedCrossRefGoogle Scholar
  103. 103.
    Williams, C. H., and C. C. Hong. Multi-step usage of in vivo models during rational drug design and discovery. Int. J. Mol. Sci. 12(4):2262–2274, 2011.PubMedCrossRefGoogle Scholar
  104. 104.
    Wlodkowic, D., and Z. Darzynkiewicz. Rise of the micromachines: microfluidics and the future of cytometry. Methods Cell Biol. 102:105–125, 2011.PubMedCrossRefGoogle Scholar
  105. 105.
    Wu, L. Y., D. Di Carlo, and L. P. Lee. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed. Microdevices 10(2):197–202, 2008.PubMedCrossRefGoogle Scholar
  106. 106.
    Yang, J., M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida, and T. Okano. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043, 2007.PubMedCrossRefGoogle Scholar
  107. 107.
    Zhang, C., Z. Zhao, N. A. Abdul Rahim, D. van Noort, and H. Yu. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9(22):3185–3192, 2009.PubMedCrossRefGoogle Scholar
  108. 108.
    Zheng, Y., P. W. Henderson, N. W. Choi, L. J. Bonassar, J. A. Spector, and A. D. Stroock. Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32(23):5391–5401, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Christopher Moraes
    • 1
  • Geeta Mehta
    • 1
  • Sasha Cai Lesher-Perez
    • 1
  • Shuichi Takayama
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Division of Nano-Bio and Chemical Engineering WCU ProjectUNISTUlsanRepublic of Korea

Personalised recommendations