Annals of Biomedical Engineering

, Volume 40, Issue 2, pp 516–533 | Cite as

The Nuts and Bolts of Low-level Laser (Light) Therapy

  • Hoon Chung
  • Tianhong Dai
  • Sulbha K. Sharma
  • Ying-Ying Huang
  • James D. Carroll
  • Michael R. HamblinEmail author


Soon after the discovery of lasers in the 1960s it was realized that laser therapy had the potential to improve wound healing and reduce pain, inflammation and swelling. In recent years the field sometimes known as photobiomodulation has broadened to include light-emitting diodes and other light sources, and the range of wavelengths used now includes many in the red and near infrared. The term “low level laser therapy” or LLLT has become widely recognized and implies the existence of the biphasic dose response or the Arndt-Schulz curve. This review will cover the mechanisms of action of LLLT at a cellular and at a tissular level and will summarize the various light sources and principles of dosimetry that are employed in clinical practice. The range of diseases, injuries, and conditions that can be benefited by LLLT will be summarized with an emphasis on those that have reported randomized controlled clinical trials. Serious life-threatening diseases such as stroke, heart attack, spinal cord injury, and traumatic brain injury may soon be amenable to LLLT therapy.


Low level laser therapy Photobiomodulation Mitochondria Tissue optics Wound healing Hair regrowth Laser acupuncture 



Funding: Research in the Hamblin laboratory is supported by NIH grant R01AI050875, Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006), CDMRP Program in TBI (W81XWH-09-1-0514) and Air Force Office of Scientific Research (FA9950-04-1-0079). Tianhong Dai was supported by an Airlift Research Foundation Extremity Trauma Research Grant (grant 109421).

Conflicts of interest

James D. Carroll is the owner of THOR Photomedicine, a company which sells LLLT devices.


  1. 1.
    Abergel, R. P., R. F. Lyons, J. C. Castel, R. M. Dwyer, and J. Uitto. Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J. Dermatol. Surg. Oncol. 13:127–133, 1987.PubMedGoogle Scholar
  2. 2.
    Ad, N., and U. Oron. Impact of low level laser irradiation on infarct size in the rat following myocardial infarction. Int. J. Cardiol. 80:109–116, 2001.PubMedGoogle Scholar
  3. 3.
    Almeida-Lopes, L., J. Rigau, and R. A. Zangaro. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg. Med. 29:179–184, 2001.PubMedGoogle Scholar
  4. 4.
    Anneroth, G., G. Hall, H. Ryden, and L. Zetterqvist. The effect of low-energy infra-red laser radiation on wound healing in rats. Br. J. Oral. Maxillofac. Surg. 26:12–17, 1988.PubMedGoogle Scholar
  5. 5.
    Antunes, F., A. Boveris, and E. Cadenas. On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc. Natl Acad. Sci. USA. 101:16774–16779, 2004.PubMedGoogle Scholar
  6. 6.
    Ball, K. A., P. R. Castello, and R. O. Poyton. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J. Photochem. Photobiol. B. 102:182–191, 2011.PubMedGoogle Scholar
  7. 7.
    Bisht, D., S. C. Gupta, and V. Mistra. Effect of low intensity laser radiation on healing of open skin wounds in rats. Indian J. Med. Res. 100:43–46, 1994.PubMedGoogle Scholar
  8. 8.
    Bisht, D., R. Mehrortra, P. A. Singh, S. C. Atri, and A. Kumar. Effect of helium-neon laser on wound healing. Indian J. Exp. Biol. 37:187–189, 1999.PubMedGoogle Scholar
  9. 9.
    Bjordal, J. M., C. Couppe, R. T. Chow, J. Tuner, and E. A. Ljunggren. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust. J. Physiother. 49:107–116, 2003.PubMedGoogle Scholar
  10. 10.
    Capaldi, R. A., F. Malatesta, and V. M. Darley-Usmar. Structure of cytochrome c oxidase. Biochim. Biophys. Acta 726:135–148, 1983.PubMedGoogle Scholar
  11. 11.
    Castano, A. P., T. Dai, I. Yaroslavsky, R. Cohen, W. A. Apruzzese, M. H. Smotrich, and M. R. Hamblin. Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time. Lasers Surg. Med. 39:543–550, 2007.PubMedGoogle Scholar
  12. 12.
    Cauwels, R. G., and L. C. Martens. Low level laser therapy in oral mucositis: a pilot study. Eur. Arch Paediatr. Dent. 12:118–123, 2011.PubMedGoogle Scholar
  13. 13.
    Chandrasekhar, S. Radiative transfer. New York: Dover Publications, 1960.Google Scholar
  14. 14.
    Chang, W. D., J. H. Wu, J. A. Jiang, C. Y. Yeh, and C. T. Tsai. Carpal tunnel syndrome treated with a diode laser: a controlled treatment of the transverse carpal ligament. Photomed. Laser Surg. 26:551–557, 2008.PubMedGoogle Scholar
  15. 15.
    Chen, A. C.-H., P. R. Arany, Y.-Y. Huang, E. M. Tomkinson, T. Saleem, F. E. Yull, T. S. Blackwell, and M. R. Hamblin. Low level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts. Proc. SPIE. 7165:71650–71659, 2009.Google Scholar
  16. 16.
    Cheong, W. F., S. A. Prahl, and A. J. Welch. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26:2166–2185, 1990.Google Scholar
  17. 17.
    Chow, R. T., M. I. Johnson, R. A. Lopes-Martins, and J. M. Bjordal. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374:1897–1908, 2009.PubMedGoogle Scholar
  18. 18.
    Christie, A., G. Jamtvedt, K. T. Dahm, R. H. Moe, E. Haavardsholm, and K. B. Hagen. Effectiveness of nonpharmacological and nonsurgical interventions for patients with rheumatoid arthritis: an overview of systematic reviews. Phys. Ther. 87:1697–1715, 2007.PubMedGoogle Scholar
  19. 19.
    da Silva, D. F., B. C. Vidal, D. M. Zezell, T. M. Zorn, S. C. Nunez, and M. S. Ribeiro. Collagen birefringence in skin repair in response to red polarized-laser therapy. J. Biomed. Opt. 11:024002, 2006.Google Scholar
  20. 20.
    Demidova-Rice, T. N., E. V. Salomatina, A. N. Yaroslavsky, I. M. Herman, and M. R. Hamblin. Low-level light stimulates excisional wound healing in mice. Lasers Surg. Med. 39:706–715, 2007.PubMedGoogle Scholar
  21. 21.
    deTaboada, L., S. Ilic, S. Leichliter-Martha, U. Oron, A. Oron, J. Streeter, et al. Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg. Med. 38:70–73, 2006.PubMedGoogle Scholar
  22. 22.
    el Sayed, S. O., and M. Dyson. Effect of laser pulse repetition rate and pulse duration on mast cell number and degranulation. Lasers Surg. Med. 19:433–437, 1996.PubMedGoogle Scholar
  23. 23.
    Emanet, S. K., L. I. Altan, and M. Yurtkuran. Investigation of the effect of GaAs laser therapy on lateral epicondylitis. Photomed. Laser Surg. 28:397–403, 2010.PubMedGoogle Scholar
  24. 24.
    Gigo-Benato, D., S. Geuna, and S. Rochkind. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve. 31:694–701, 2005.PubMedGoogle Scholar
  25. 25.
    Goodson, W. H., and T. K. Hunt. Wound healing and the diabetic patient. Surg. Gynecol. Obstet. 149:600–608, 1979.PubMedGoogle Scholar
  26. 26.
    Gouvea de Lima, A., R. C. Villar, G. de Castro, Jr., R. Antequera, E. Gil, M. C. Rosalmeida, M. H. Federico, and I. M. Snitcovsky. Oral mucositis prevention by low-level laser therapy in head-and-neck cancer patients undergoing concurrent chemoradiotherapy: a phase III randomized study. Int. J. Radiat. Oncol. Biol. Phys. 2010. [Epub ahead of print]. doi: 10.1016/j.ijrobp.2010.10.012.
  27. 27.
    Greco, M., G. Guida, E. Perlino, E. Marra, and E. Quagliariello. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem. Biophys. Res. Commun. 163:1428–1434, 1989.PubMedGoogle Scholar
  28. 28.
    Gur, A., A. Cosut, A. J. Sarac, R. Cevik, K. Nas, and A. Uyar. Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized-controlled trial. Lasers Surg. Med. 33:330–338, 2003.PubMedGoogle Scholar
  29. 29.
    Hashmi, J. T., Y.-Y. Huang, B. Z. Osmani, S. K. Sharma, M. A. Naeser, and M. R. Hamblin. Role of low-level laser therapy in neurorehabilitation. PM & R. 2:S292–S305, 2010.Google Scholar
  30. 30.
    Hashmi, J. T., Y. Y. Huang, S. K. Sharma, D. B. Kurup, L. De Taboada, J. D. Carroll, and M. R. Hamblin. Effect of pulsing in low-level light therapy. Lasers Surg. Med. 42:450–466, 2010.PubMedGoogle Scholar
  31. 31.
    Hawkins, D., and H. Abrahamse. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed. Laser Surg. 23:251–259, 2005.PubMedGoogle Scholar
  32. 32.
    Hawkins, D., N. Houreld, and H. Abrahamse. Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann. NY Acad. Sci. 1056:486–493, 2005.PubMedGoogle Scholar
  33. 33.
    Haxsen, V., D. Schikora, U. Sommer, A. Remppis, J. Greten, and C. Kasperk. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers Med. Sci. 23:381–384, 2008.PubMedGoogle Scholar
  34. 34.
    Hayworth, C. R., J. C. Rojas, E. Padilla, G. M. Holmes, E. C. Sheridan, and F. Gonzalez-Lima. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem. Photobiol. 86:673–680, 2010.PubMedGoogle Scholar
  35. 35.
    Hegedus, B., L. Viharos, M. Gervain, and M. Galfi. The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed. Laser Surg. 27:577–584, 2009.PubMedGoogle Scholar
  36. 36.
    Hoffmann, G. Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing. GMS Krankenhhyg Interdiszip. 2:Doc54, 2007.Google Scholar
  37. 37.
    Huang, Y.-Y., A. C.-H. Chen, J. D. Carroll, et al. Biphasic dose response in low level light therapy. Dose Response 7:358–383, 2009.PubMedGoogle Scholar
  38. 38.
    Huang, Y. Y., S. K. Sharma, J. D. Carroll, and M. R. Hamblin. Biphasic dose response in low level light therapy—an update. Dose Response 2011, in press.Google Scholar
  39. 39.
    Huang, C. Y., R. S. Yang, T. S. Kuo, and K. H. Hsu. Phantom limb pain treated by far infrared ray. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:1589–1591, 2009.PubMedGoogle Scholar
  40. 40.
    Jamtvedt, G., K. T. Dahm, A. Christie, R. H. Moe, E. Haavardsholm, I. Holm, and K. B. Hagen. Physical therapy interventions for patients with osteoarthritis of the knee: an overview of systematic reviews. Phys. Ther. 88:123–136, 2008.PubMedGoogle Scholar
  41. 41.
    Kana, J. S., G. Hutschenreiter, D. Haina, and W. Waidelich. Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch. Surg. 116:293–296, 1981.PubMedGoogle Scholar
  42. 42.
    Karu, T. I. Photobiological fundamentals of low-power laser therapy. IEEE J. Quantum Electron. 23:1703–1717, 1987.Google Scholar
  43. 43.
    Karu, T. I. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. 49:1–17, 1999.PubMedGoogle Scholar
  44. 44.
    Karu, T. I., and N. I. Afanas’eva. Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl. Akad. Nauk. 342:693–695, 1995.PubMedGoogle Scholar
  45. 45.
    Karu, T. I., and S. F. Kolyakov. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 23:355–361, 2005.PubMedGoogle Scholar
  46. 46.
    Karu, T. I., L. V. Pyatibrat, and N. I. Afanasyeva. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 36:307–314, 2005.PubMedGoogle Scholar
  47. 47.
    Karu, T. I., L. V. Pyatibrat, and G. S. Kalendo. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J. Photochem. Photobiol. B 27:219–223, 1995.PubMedGoogle Scholar
  48. 48.
    Kaviani, A., G. E. Djavid, L. Ataie-Fashtami, M. Fateh, M. Ghodsi, M. Salami, N. Zand, N. Kashef, and B. Larijani. A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: a preliminary report. Photomed. Laser Surg. 29:109–114, 2011.PubMedGoogle Scholar
  49. 49.
    Kokol, R., C. Berger, J. Haas, and D. Kopera. Venous leg ulcers: no improvement of wound healing with 685-nm low level laser therapy. Randomised, placebo-controlled, double-blind study. Hautarzt 56:570–575, 2005.PubMedGoogle Scholar
  50. 50.
    Lam, L. K., and G. L. Cheing. Effects of 904-nm low-level laser therapy in the management of lateral epicondylitis: a randomized controlled trial. Photomed. Laser Surg. 25:65–71, 2007.PubMedGoogle Scholar
  51. 51.
    Lampl, Y., J. A. Zivin, M. Fisher, R. Lew, L. Welin, B. Dahlof, P. Borenstein, B. Andersson, J. Perez, C. Caparo, S. Ilic, and U. Oron. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38:1843–1849, 2007.PubMedGoogle Scholar
  52. 52.
    Lane, N. Cell biology: power games. Nature 443:901–903, 2006.PubMedGoogle Scholar
  53. 53.
    Lanzafame, R. J., I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter, Sr., P. Brondon, and D. Olson. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg. Med. 39:534–542, 2007.PubMedGoogle Scholar
  54. 54.
    Lapchak, P. A., K. F. Salgado, C. H. Chao, and J. A. Zivin. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148:907–914, 2007.PubMedGoogle Scholar
  55. 55.
    Leavitt, M., G. Charles, E. Heyman, and D. Michaels. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin. Drug Invest. 29:283–292, 2009.Google Scholar
  56. 56.
    Lebed’kov, E. V., P. I. Tolstykh, L. F. Marchenko, T. I. Turkina, and V. T. Krivikhin. The effect of the laser irradiation of the blood on its lipid and phospholipid components in diabetes mellitus. Voen Med. Zh. 319:37–38, 95, 1998.Google Scholar
  57. 57.
    Lee, G., R. M. Ikeda, R. M. Dwyer, H. Hussein, P. Dietrich, and D. T. Mason. Feasibility of intravascular laser irradiation for in vivo visualization and therapy of cardiocirculatory diseases. Am. Heart J. 103:1076–1077, 1982.PubMedGoogle Scholar
  58. 58.
    Lima, A. G., R. Antequera, M. P. Peres, I. M. Snitcosky, M. H. Federico, and R. C. Villar. Efficacy of low-level laser therapy and aluminum hydroxide in patients with chemotherapy and radiotherapy-induced oral mucositis. Braz Dent J. 21:186–192, 2010.PubMedGoogle Scholar
  59. 59.
    Lin, Y. S., M. H. Huang, and C. Y. Chai. Effects of helium-neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage. Osteoarthr. Cartil. 14:377–383, 2006.PubMedGoogle Scholar
  60. 60.
    Loevschall, H., and D. Arenholt-Bindeslev. Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg. Med. 14:347–354, 1994.PubMedGoogle Scholar
  61. 61.
    Lohr, N. L., A. Keszler, P. Pratt, M. Bienengraber, D. C. Warltier, and N. Hogg. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J. Mol. Cell. Cardiol. 47:256–263, 2009.PubMedGoogle Scholar
  62. 62.
    Lundeberg, T., and M. Malm. Low-power HeNe laser treatment of venous leg ulcers. Ann. Plast. Surg. 27:537–539, 1991.PubMedGoogle Scholar
  63. 63.
    Martius, F. Das Amdt-Schulz Grandgesetz. Munch. Med. Wschr. 70:1005–1006, 1923.Google Scholar
  64. 64.
    McCarthy, T. J., L. De Taboada, P. K. Hildebrandt, E. L. Ziemer, S. P. Richieri, and J. Streeter. Long-term safety of single and multiple infrared transcranial laser treatments in Sprague-Dawley rats. Photomed. Laser Surg. 28:663–667, 2010.PubMedGoogle Scholar
  65. 65.
    McGuff, P. E., D. Bushnell, H. S. Soroff, and R. A. Deterling, Jr. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation). Surg. Forum. 14:143–145, 1963.PubMedGoogle Scholar
  66. 66.
    Medalha, C. C., B. O. Amorim, J. M. Ferreira, P. Oliveira, R. M. Pereira, C. Tim, A. P. Lirani-Galvao, O. L. da Silva, and A. C. Renno. Comparison of the effects of electrical field stimulation and low-level laser therapy on bone loss in spinal cord-injured rats. Photomed. Laser Surg. 28:669–674, 2010.PubMedGoogle Scholar
  67. 67.
    Medrado, A. R., L. S. Pugliese, S. R. Reis, and Z. A. Andrade. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg. Med. 32:239–244, 2003.Google Scholar
  68. 68.
    Mester, E., A. F. Mester, and A. Mester. The biomedical effects of laser application. Lasers Surg. Med. 5:31–39, 1985.PubMedGoogle Scholar
  69. 69.
    Mester, E., S. Nagylucskay, A. Doklen, and S. Tisza. Laser stimulation of wound healing. Acta Chir. Acad. Sci. Hung. 17:49–55, 1976.PubMedGoogle Scholar
  70. 70.
    Mester, E., T. Spiry, B. Szende, and J. G. Tota. Effect of laser rays on wound healing. Am. J. Surg. 122:532–535, 1971.PubMedGoogle Scholar
  71. 71.
    Mester, E., B. Szende, T. Spiry, and A. Scher. Stimulation of wound healing by laser rays. Acta Chir. Acad. Sci. Hung. 13:315–324, 1972.PubMedGoogle Scholar
  72. 72.
    Mester, E., B. Szende, and J. G. Tota. Effect of laser on hair growth of mice. Kiserl Orvostud. 19:628–631, 1967.Google Scholar
  73. 73.
    Meyers, A. D. Lasers and wound healing. Arch. Otolaryngol. Head Neck Surg. 116:1128, 1990.PubMedGoogle Scholar
  74. 74.
    Michalikova, S., A. Ennaceur, R. van Rensburg, and P. L. Chazot. Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol. Learn. Mem. 89:480–488, 2008.PubMedGoogle Scholar
  75. 75.
    Moges, H., O. M. Vasconcelos, W. W. Campbell, R. C. Borke, J. A. McCoy, L. Kaczmarczyk, J. Feng, and J. J. Anders. Light therapy and supplementary Riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg. Med. 41:52–59, 2009.PubMedGoogle Scholar
  76. 76.
    Moore, P., T. D. Ridgway, R. G. Higbee, E. W. Howard, and M. D. Lucroy. Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg. Med. 36:8–12, 2005.PubMedGoogle Scholar
  77. 77.
    Moreira, M. S., I. T. Velasco, L. S. Ferreira, S. K. Ariga, D. F. Barbeiro, D. T. Meneguzzo, F. Abatepaulo, and M. M. Marques. Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J. Photochem. Photobiol. B. 97:145–151, 2009.PubMedGoogle Scholar
  78. 78.
    Moreno, I., and C. C. Sun. Modeling the radiation pattern of LEDs. Opt. Express 16:1808–1819, 2008.PubMedGoogle Scholar
  79. 79.
    Naeser, M. A., A. Saltmarche, M. H. Krengel, M. R. Hamblin, and J. A. Knight. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed. Laser Surg. 29:351–358, 2011.PubMedGoogle Scholar
  80. 80.
    Noble, P. B., E. D. Shields, P. D. Blecher, and K. C. Bentley. Locomotory characteristics of fibroblasts within a three-dimensional collagen lattice: modulation by a Helium/Neon soft laser. Lasers Surg. Med. 12:669–674, 1992.PubMedGoogle Scholar
  81. 81.
    Oron, A., U. Oron, J. Chen, A. Eilam, C. Zhang, M. Sadeh, Y. Lampl, J. Streeter, L. DeTaboada, and M. Chopp. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37:2620–2624, 2006.PubMedGoogle Scholar
  82. 82.
    Oron, A., U. Oron, J. Streeter, L. de Taboada, A. Alexandrovich, V. Trembovler, and E. Shohami. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J. Neurotrauma. 24:651–656, 2007.PubMedGoogle Scholar
  83. 83.
    Passarella, S., E. Casamassima, S. Molinari, D. Pastore, E. Quagliariello, I. M. Catalano, and A. Cingolani. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 175:95–99, 1984.PubMedGoogle Scholar
  84. 84.
    Pastore, D., M. Greco, V. A. Petragallo, and S. Passarella. Increase in H+/e ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser. Biochem. Mol. Biol. Int. 34:817–826, 1994.PubMedGoogle Scholar
  85. 85.
    Pereira, A. N., P. Eduardo Cde, E. Matson, and M. M. Marques. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg. Med. 31:263–267, 2002.PubMedGoogle Scholar
  86. 86.
    Pinheiro, A. L., D. H. Pozza, M. G. Oliveira, R. Weissmann, and L. M. Ramalho. Polarized light (400–2000 nm) and non-ablative laser (685 nm): a description of the wound healing process using immunohistochemical analysis. Photomed. Laser Surg. 23:485–492, 2005.PubMedGoogle Scholar
  87. 87.
    Posten, W., D. A. Wrone, J. S. Dover, K. A. Arndt, S. Silapunt, and M. Alam. Low-level laser therapy for wound healing: mechanism and efficiency. Dermatol. Surg. 31:334–340, 2005.PubMedGoogle Scholar
  88. 88.
    Poyton, R. O., and K. A. Ball. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov. Med. 11:154–159, 2011.PubMedGoogle Scholar
  89. 89.
    Raskin, P., J. F. Marks, H. Burns, M. D. Plumer, and M. D. L. Siperstein. Capillary basement membrane within diabetic children. Am. J. Med. 58:365–375, 1975.PubMedGoogle Scholar
  90. 90.
    Reddy, G. K., L. Stehno-Bittel, and C. S. Enwemeka. Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 9:248–255, 2001.PubMedGoogle Scholar
  91. 91.
    Ribeiro, M. S., D. F. Da Silva, C. E. De Araujo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell. Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. J. Clin. Laser Med. Surg. 22:59–66, 2004.PubMedGoogle Scholar
  92. 92.
    Rubio, C. R., D. Cremonezzi, M. Moya, F. Soriano, J. Palma, and V. Campana. Helium-neon laser reduces the inflammatory process of arthritis. Photomed. Laser Surg. 28:125–129, 2010.PubMedGoogle Scholar
  93. 93.
    Sandford, M. A., and L. J. Walsh. Thermal effects during desensitisation of teeth with gallium-aluminium-arsenide lasers. Periodontology 15:25–30, 1994.Google Scholar
  94. 94.
    Santana-Blank, L., and E. Rodriguez-Santana. The interaction of light with nanoscopic layers of water may be essential to the future of photobiomodulation. Photomed. Laser Surg. 28(Suppl 1):S173–S174, 2010.PubMedGoogle Scholar
  95. 95.
    Santana-Blank, L., E. Rodriguez-Santana, and K. Santana-Rodriguez. Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed. Laser Surg. 28(Suppl 1):S41–S52, 2010.PubMedGoogle Scholar
  96. 96.
    Schiffer, F., A. L. Johnston, C. Ravichandran, A. Polcari, M. H. Teicher, R. H. Webb, and M. R. Hamblin. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct. 5:46, 2009.PubMedGoogle Scholar
  97. 97.
    Schikora, D. Laserneedle acupuncture: a critical review and recent results. Med. Acupunct. 20:37–42, 2008.Google Scholar
  98. 98.
    Schindl, A., G. Heinze, M. Schindl, H. Pernerstorfer-Schon, and L. Schindl. Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc. Res. 64:240–246, 2002.PubMedGoogle Scholar
  99. 99.
    Schindl, A., M. Schindl, and H. Pernerstorfer-Schon. Low intensity laser irradiation in the treatment of recalcitrant radiation ulcers in patients with breast cancer–long-term results of 3 cases. Photodermatol. Photoimmunol. Photomed. 16:34–37, 2000.PubMedGoogle Scholar
  100. 100.
    Schindl, A., M. Schindl, H. Schon, R. Knobler, L. Havelec, and L. Schindl. Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care. 21:580–584, 1998.PubMedGoogle Scholar
  101. 101.
    Shen, J., L. Xie, X. O. Mao, Y. Zhou, R. Zhan, D. A. Greenberg, and K. Jin. Neurogenesis after primary intracerebral hemorrhage in adult human brain. J. Cereb. Blood Flow Metab. 28:1460–1468, 2008.PubMedGoogle Scholar
  102. 102.
    Shooshtari, S. M., V. Badiee, S. H. Taghizadeh, A. H. Nematollahi, A. H. Amanollahi, and M. T. Grami. The effects of low level laser in clinical outcome and neurophysiological results of carpal tunnel syndrome. Electromyogr. Clin. Neurophysiol. 48:229–231, 2008.PubMedGoogle Scholar
  103. 103.
    Simunovic, Z., T. Trobonjaca, and Z. Trobonjaca. Treatment of medial and lateral epicondylitis–tennis and golfer’s elbow—with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. J. Clin. Laser Med. Surg. 16:145–151, 1998.PubMedGoogle Scholar
  104. 104.
    Skinner, S. M., J. P. Gage, P. A. Wilce, and R. M. Shaw. A preliminary study of the effects of laser radiation on collagen metabolism in cell culture. Aust. Dent. J. 41:188–192, 1996.PubMedGoogle Scholar
  105. 105.
    Sommer, A. P., A. L. Pinheiro, A. R. Mester, R. P. Franke, and H. T. Whelan. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J. Clin. Laser Med. Surg. 19:29–33, 2001.PubMedGoogle Scholar
  106. 106.
    Spanheimer, R. G., G. E. Umpierrez, and V. Stumpf. Decreased collagen production in diabetic rats. Diabetes 37:371–376, 1988.PubMedGoogle Scholar
  107. 107.
    Stebliukova, I. A., N. B. Khairetdinova, A. M. Belov, and N. A. Kakitelashvili. Effects of low-energy laser irradiation on platelet aggregation in cerebrovascular disorders. Sov. Med. (3):77–80, 1989.Google Scholar
  108. 108.
    Sutherland, J. C. Biological effects of polychromatic light. Photochem. Photobiol. 76:164–170, 2002.PubMedGoogle Scholar
  109. 109.
    Tadakuma, T. Possible application of the laser in immunobiology. Keio J. Med. 42:180–182, 1993.PubMedGoogle Scholar
  110. 110.
    Tascioglu, F., N. A. Degirmenci, S. Ozkan, and O. Mehmetoglu. Low-level laser in the treatment of carpal tunnel syndrome: clinical, electrophysiological, and ultrasonographical evaluation. Rheumatol. Int. 2010. [Epub ahead of print]. doi: 10.1007/s00296-010-1652-6.
  111. 111.
    Thomas, D. W., I. D. O’Neill, K. G. Harding, and J. P. Shepherd. Cutaneous wound healing: a current perspective. J. Oral Maxillofac. Surg. 53:442–447, 1995.PubMedGoogle Scholar
  112. 112.
    Trimmer, P. A., K. M. Schwartz, M. K. Borland, L. DeTaboada, J. Streeter, and U. Oron. Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol. Neurodegener. 4:26, 2009.PubMedGoogle Scholar
  113. 113.
    Tuby, H., L. Maltz, and U. Oron. Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg. Med. 38:682–688, 2006.PubMedGoogle Scholar
  114. 114.
    Wahl, G., and S. Bastanier. Soft laser in postoperative care in dentoalveolar treatment. ZWR 100:512–515, 1991.PubMedGoogle Scholar
  115. 115.
    Walsh, L. J., G. Trinchieri, H. A. Waldorf, D. Whitaker, and G. F. Murphy. Human dermal mast cells contain and release tumor necrosis factor-alpha which induces endothelial leukocyte adhesion molecule-1. Proc. Natl Acad. Sci. USA. 88:4220–4224, 1991.PubMedGoogle Scholar
  116. 116.
    Webb, C., M. Dyson, and W. H. Lewis. Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: possible mechanisms for increase in cell counts. Lasers Surg. Med. 22:294–301, 1998.PubMedGoogle Scholar
  117. 117.
    Weber, M. H., and T. W. Fussgänger-May. Intravenous laser blood irradiation. German J. Acupunct. Rel. Tech. 50:12–23, 2007.Google Scholar
  118. 118.
    Welch, A. J., J. H. Torres, and W. F. Cheong. Laser physics and laser-tissue interaction. Tex. Heart Inst. J. 16:141–149, 1989.PubMedGoogle Scholar
  119. 119.
    Whittaker, P. Laser acupuncture: past, present, and future. Lasers Med. Sci. 19:69–80, 2004.PubMedGoogle Scholar
  120. 120.
    Wu, X., A. E. Dmitriev, M. J. Cardoso, A. G. Viers-Costello, R. C. Borke, J. Streeter, and J. J. Anders. 810 nm wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg. Med. 41:36–41, 2009.PubMedGoogle Scholar
  121. 121.
    Wu, Q., Y. Y. Huang, S. Dhital, S. K. Sharma, A. C. Chen, M. J. Whalen, and M. R. Hamblin. Low level laser therapy for traumatic brain injury. Proc. SPIE. 7552:755201–755206, 2010.Google Scholar
  122. 122.
    Xiao, L., Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23:926–952, 2011.PubMedGoogle Scholar
  123. 123.
    Yang, Z., Y. Wu, H. Zhang, P. Jin, W. Wang, J. Hou, Y. Wei, and S. Hu. Low-level laser irradiation alters cardiac cytokine expression following acute myocardial infarction: a potential mechanism for laser therapy. Photomed. Laser Surg. 29:391–398, 2011.PubMedGoogle Scholar
  124. 124.
    Yu, W., J. O. Naim, and J. Lanzafame. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg. Med. 20:56–63, 1997.PubMedGoogle Scholar
  125. 125.
    Yu, H. S., C. S. Wu, C. L. Yu, Y. H. Kao, and M. H. Chiou. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J. Invest. Dermatol. 120:56–64, 2003.PubMedGoogle Scholar
  126. 126.
    Zand, N., L. Ataie-Fashtami, G. E. Djavid, M. Fateh, M. R. Alinaghizadeh, S. M. Fatemi, and F. Arbabi-Kalati. Relieving pain in minor aphthous stomatitis by a single session of non-thermal carbon dioxide laser irradiation. Lasers Med. Sci. 24:515–520, 2009.PubMedGoogle Scholar
  127. 127.
    Zhang, R., Y. Mio, P. F. Pratt, N. Lohr, D. C. Warltier, H. T. Whelan, D. Zhu, E. R. Jacobs, M. Medhora, and M. Bienengraeber. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J. Mol. Cell. Cardiol. 46:4–14, 2009.PubMedGoogle Scholar
  128. 128.
    Zhang, Y., S. Song, C. C. Fong, C. H. CTsang, Z. Yang, and M. Yang. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J. Invest. Dermatol. 120:849–857, 2003.PubMedGoogle Scholar
  129. 129.
    Zhang, L., D. Xing, D. Zhu, and Q. Chen. Low-power laser irradiation inhibiting Abeta25–35-induced PC12 cell apoptosis via PKC activation. Cell Physiol. Biochem. 22:215–222, 2008.PubMedGoogle Scholar
  130. 130.
    Zivin, J. A., G. W. Albers, N. Bornstein, T. Chippendale, B. Dahlof, T. Devlin, M. Fisher, W. Hacke, W. Holt, S. Ilic, S. Kasner, R. Lew, M. Nash, J. Perez, M. Rymer, P. Schellinger, D. Schneider, S. Schwab, R. Veltkamp, M. Walker, and J. Streeter. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40:1359–1364, 2009.PubMedGoogle Scholar
  131. 131.
    Zycinski, P., M. Krzeminska-Pakula, C. Peszynski-Drews, A. Kierus, E. Trzos, T. Rechcinski, L. Figiel, M. Kurpesa, M. Plewka, L. Chrzanowski, and J. Drozdz. Laser biostimulation in end-stage multivessel coronary artery disease–a preliminary observational study. Kardiol. Pol. 65:13–21, 2007; discussion 22–13.Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Hoon Chung
    • 1
    • 2
  • Tianhong Dai
    • 1
    • 2
  • Sulbha K. Sharma
    • 1
  • Ying-Ying Huang
    • 1
    • 2
    • 3
  • James D. Carroll
    • 4
  • Michael R. Hamblin
    • 1
    • 2
    • 5
    Email author
  1. 1.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA
  2. 2.Department of DermatologyHarvard Medical SchoolBostonUSA
  3. 3.Aesthetic and Plastic Center of Guangxi Medical UniversityNanningPeople’s Republic of China
  4. 4.Thor Photomedicine LtdCheshamUK
  5. 5.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA

Personalised recommendations