Annals of Biomedical Engineering

, Volume 40, Issue 6, pp 1301–1315 | Cite as

Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment

  • Faramarz Edalat
  • Hojae Bae
  • Sam Manoucheri
  • Jae Min Cha
  • Ali Khademhosseini
Article

Abstract

Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e., the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. In this article, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering.

Keywords

Biomaterials Nano- and microfabrication High-throughput Microfluidics Regenerative medicine 

References

  1. 1.
    Adamo, L., O. Naveiras, P. L. Wenzel, S. McKinney-Freeman, P. J. Mack, J. Gracia-Sancho, A. Suchy-Dicey, M. Yoshimoto, M. W. Lensch, and M. C. Yoder. Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams, G. B., R. P. Martin, I. R. Alley, K. T. Chabner, K. S. Cohen, L. M. Calvi, H. M. Kronenberg, and D. T. Scadden. Therapeutic targeting of a stem cell niche. Nat. Biotechnol. 25:238–243, 2007.PubMedCrossRefGoogle Scholar
  3. 3.
    Alberti, K., R. E. Davey, K. Onishi, S. George, K. Salchert, F. P. Seib, M. Bornhäuser, T. Pompe, A. Nagy, C. Werner, and P. W. Zandstra. Functional immobilization of signaling proteins enables control of stem cell fate. Nat. Methods 5:645–650, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Albrecht, D. R., G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia. Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3:369–375, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson, D. G., S. Levenberg, and R. Langer. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22:863–866, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Baker, B. M., A. O. Gee, R. B. Metter, A. S. Nathan, R. A. Marklein, J. A. Burdick, and R. L. Mauck. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Benoit, D. S., M. P. Schwartz, A. R. Durney, and K. S. Anseth. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 7:816–823, 2008.PubMedCrossRefGoogle Scholar
  8. 8.
    Bettinger, C. J., R. Langer, and J. T. Borenstein. Engineering substrate topography at the micro‐and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl. 48:5406–5415, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Bhardwaj, G., B. Murdoch, D. Wu, D. P. Baker, K. P. Williams, K. Chadwick, L. E. Ling, F. N. Karanu, and M. Bhatia. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2:172–180, 2001.PubMedCrossRefGoogle Scholar
  10. 10.
    Burdick, J. A., A. Khademhosseini, and R. Langer. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–5156, 2004.PubMedCrossRefGoogle Scholar
  11. 11.
    Burdick, J. A., and G. Vunjak-Novakovic. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. A 15:205–219, 2009.CrossRefGoogle Scholar
  12. 12.
    Campbell, P. G., and L. E. Weiss. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther. 7:1123–1127, 2007.PubMedCrossRefGoogle Scholar
  13. 13.
    Carpenedo, R. L., A. M. Bratt-Leal, R. A. Marklein, S. A. Seaman, N. J. Bowen, J. F. McDonald, and T. C. McDevitt. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 30:2507–2515, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Chowdhury, F., S. Na, D. Li, Y. C. Poh, T. S. Tanaka, F. Wang, and N. Wang. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9:82–88, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Chung, B. G., L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Clevers, H. The cancer stem cell: premises promises and challenges. Nat. Med. 17:313–319, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Conboy, I. M., M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman, and T. A. Rando. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Connelly, J. T., J. E. Gautrot, B. Trappmann, D. W. M. Tan, G. Donati, W. T. S. Huck, and F. M. Watt. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12:711–718, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6:997–1003, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Daley, G. Q., and D. T. Scadden. Prospects for stem cell-based therapy. Cell 132:544–548, 2008.PubMedCrossRefGoogle Scholar
  23. 23.
    Davis, M. E., J. P. M. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. Zhang, and R. T. Lee. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–450, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Dawson, E., G. Mapili, K. Erickson, S. Taqvi, and K. Roy. Biomaterials for stem cell differentiation. Adv. Drug Deliv. Rev. 60:215–228, 2008.PubMedCrossRefGoogle Scholar
  25. 25.
    de Haan, G., E. Weersing, B. Dontje, R. van Os, L. V. Bystrykh, E. Vellenga, and G. Miller. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev. Cell 4:241–251, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Derda, R., L. Li, B. P. Orner, R. L. Lewis, J. A. Thomson, and L. L. Kiessling. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem. Biol. 2:347–355, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Dertinger, S. K. W., D. T. Chiu, N. L. Jeon, and G. M. Whitesides. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73:1240–1246, 2001.CrossRefGoogle Scholar
  28. 28.
    Desbordes, S. C., D. G. Placantonakis, A. Ciro, N. D. Socci, G. Lee, H. Djaballah, and L. Studer. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2:602–612, 2008.PubMedCrossRefGoogle Scholar
  29. 29.
    Dickinson, L. E., S. Kusuma, and S. Gerecht. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol. Biosci. 11:36–49, 2011.PubMedCrossRefGoogle Scholar
  30. 30.
    Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Du, Y., M. Ghodousi, H. Qi, N. Haas, W. Xiao, and A. Khademhosseini. Sequential assembly of cell‐laden hydrogel constructs to engineer vascular‐like microchannels. Biotechnol. Bioeng. 108:1693–1703, 2011.PubMedCrossRefGoogle Scholar
  32. 32.
    Du, Y., E. Lo, S. Ali, and A. Khademhosseini. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. USA 105:9522–9527, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Dvir, T., B. P. Timko, D. S. Kohane, and R. Langer. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6:13–22, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.PubMedCrossRefGoogle Scholar
  35. 35.
    Eyckmans, J., T. Boudou, X. Yu, and C. S. Chen. A hitchhiker’s guide to mechanobiology. Dev. Cell. 21:35–47, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Fan, V. H., A. Au, K. Tamama, R. Littrell, L. B. Richardson, J. W. Wright, A. Wells, and L. G. Griffith. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25:1241–1251, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Fernandes, T. G., M. M. Diogo, D. S. Clark, J. S. Dordick, and J. Cabral. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 27:342–349, 2009.PubMedCrossRefGoogle Scholar
  38. 38.
    Flaim, C. J., S. Chien, and S. N. Bhatia. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2:119–125, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Flaim, C. J., D. Teng, S. Chien, and S. N. Bhatia. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev. 17:29–40, 2008.PubMedCrossRefGoogle Scholar
  40. 40.
    Fletcher, D. A., and R. D. Mullins. Cell mechanics and the cytoskeleton. Nature 463:485–492, 2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Folkman, J., and A. Moscona. Role of cell shape in growth control. Nature 273:345–349, 1978.PubMedCrossRefGoogle Scholar
  42. 42.
    Fu, J., Y. K. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–736, 2010.PubMedCrossRefGoogle Scholar
  43. 43.
    Fuchs, E., T. Tumbar, and G. Guasch. Socializing with the neighbors: stem cells and their niche. Cell 116:769–778, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Gao, L., R. McBeath, and C. S. Chen. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N‐Cadherin. Stem Cells 28:564–572, 2010.PubMedGoogle Scholar
  45. 45.
    Geckil, H., F. Xu, X. Zhang, S. J. Moon, and U. Demirci. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5:469–484, 2010.PubMedCrossRefGoogle Scholar
  46. 46.
    Gerecht, S., C. J. Bettinger, Z. Zhang, J. T. Borenstein, G. Vunjak-Novakovic, and R. Langer. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 28:4068–4077, 2007.PubMedCrossRefGoogle Scholar
  47. 47.
    Gerecht, S., J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, and G. Vunjak-Novakovic. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:11298–11303, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Gilbert, P. M., K. L. Havenstrite, K. E. G. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081, 2010.PubMedCrossRefGoogle Scholar
  49. 49.
    Gomi, K., M. Kanazashi, D. Lickorish, T. Arai, and J. E. Davies. Bone marrow genesis after subcutaneous delivery of rat osteogenic cell‐seeded biodegradable scaffolds into nude mice. J. Biomed. Mater. Res. A 71:602–607, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Grayson, W. L., M. Fröhlich, K. Yeager, S. Bhumiratana, M. Chan, C. Cannizzaro, L. Q. Wan, X. S. Liu, X. E. Guo, and G. Vunjak-Novakovic. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA 107:3299–3304, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    Gu, F., L. Zhang, B. A. Teply, N. Mann, A. Wang, A. F. Radovic-Moreno, R. Langer, and O. C. Farokhzad. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA 105:2586–2591, 2008.PubMedCrossRefGoogle Scholar
  52. 52.
    Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.PubMedCrossRefGoogle Scholar
  53. 53.
    Hahn, M. S., J. S. Miller, and J. L. West. Three‐dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.CrossRefGoogle Scholar
  54. 54.
    Hanson, J. A., C. B. Chang, S. M. Graves, Z. Li, T. G. Mason, and T. J. Deming. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455:85–88, 2008.PubMedCrossRefGoogle Scholar
  55. 55.
    Hill, E., T. Boontheekul, and D. J. Mooney. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl. Acad. Sci. USA 103:2494–2499, 2006.PubMedCrossRefGoogle Scholar
  56. 56.
    Holst, J., S. Watson, M. S. Lord, S. S. Eamegdool, D. V. Bax, L. B. Nivison-Smith, A. Kondyurin, L. Ma, A. F. Oberhauser, A. S. Weiss, and J. E. J. Rasko. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat. Biotechnol. 28:1123–1128, 2010.PubMedCrossRefGoogle Scholar
  57. 57.
    Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–526, 2010.PubMedCrossRefGoogle Scholar
  58. 58.
    Hwang, N. S., S. Varghese, Z. Zhang, and J. Elisseeff. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng. 12:2695–2706, 2006.PubMedCrossRefGoogle Scholar
  59. 59.
    Hwang, Y. S., B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106:16978–16983, 2009.PubMedCrossRefGoogle Scholar
  60. 60.
    Jeon, N. L., S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides. Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316, 2000.CrossRefGoogle Scholar
  61. 61.
    Kachouie, N. N., Y. Du, H. Bae, M. Khabiry, A. F. Ahari, B. Zamanian, J. Fukuda, and A. Khademhosseini. Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis 6:234–244, 2010.PubMedCrossRefGoogle Scholar
  62. 62.
    Karp, J. M., J. Yeh, G. Eng, J. Fukuda, J. Blumling, K. Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, and A. Khademhosseini. Controlling size, shape and homogeneity of embryoid bodies using poly (ethylene glycol) microwells. Lab Chip 7:786–794, 2007.PubMedCrossRefGoogle Scholar
  63. 63.
    Keenan, T. M., and A. Folch. Biomolecular gradients in cell culture systems. Lab Chip 8:34–57, 2008.PubMedCrossRefGoogle Scholar
  64. 64.
    Ker, E. D. F., B. Chu, J. A. Phillippi, B. Gharaibeh, J. Huard, L. E. Weiss, and P. G. Campbell. Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32:3413–3422, 2011.PubMedCrossRefGoogle Scholar
  65. 65.
    Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103:2480–2487, 2006.PubMedCrossRefGoogle Scholar
  66. 66.
    Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107:4872–4877, 2010.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim, J., I. S. Kim, T. H. Cho, K. B. Lee, S. J. Hwang, G. Tae, I. Noh, S. H. Lee, Y. Park, and K. Sun. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28:1830–1837, 2007.PubMedCrossRefGoogle Scholar
  68. 68.
    Kim, K., D. Dean, A. Lu, A. G. Mikos, and J. P. Fisher. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater. 7:1249–1264, 2011.PubMedCrossRefGoogle Scholar
  69. 69.
    Kobel, S., and M. Lutolf. High-throughput methods to define complex stem cell niches. BioTechniques 48:ix–xxii, 2010.PubMedCrossRefGoogle Scholar
  70. 70.
    Koh, W. G., A. Revzin, and M. V. Pishko. Poly (ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462, 2002.PubMedCrossRefGoogle Scholar
  71. 71.
    Kulangara, K., and K. W. Leong. Substrate topography shapes cell function. Soft Matter 5:4072–4076, 2009.CrossRefGoogle Scholar
  72. 72.
    LaBarge, M. A., C. M. Nelson, R. Villadsen, A. Fridriksdottir, J. R. Ruth, M. R. Stampfer, O. W. Petersen, and M. J. Bissell. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. 1:70–79, 2009.CrossRefGoogle Scholar
  73. 73.
    Le Beyec, J., R. Xu, S. Y. Lee, C. M. Nelson, A. Rizki, J. Alcaraz, and M. J. Bissell. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp. Cell Res. 313:3066–3075, 2007.PubMedCrossRefGoogle Scholar
  74. 74.
    Lecault, V., M. VanInsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8:581–586, 2011.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee, K. B., S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich. Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–1705, 2002.PubMedCrossRefGoogle Scholar
  76. 76.
    Levenberg, S., N. F. Huang, E. Lavik, A. B. Rogers, J. Itskovitz-Eldor, and R. Langer. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. USA 100:12741–12746, 2003.PubMedCrossRefGoogle Scholar
  77. 77.
    Lin, S., N. Sangaj, T. Razafiarison, C. Zhang, and S. Varghese. Influence of physical properties of biomaterials on cellular behavior. Pharm. Res. 28:1422–1430, 2011.PubMedCrossRefGoogle Scholar
  78. 78.
    Lopez-Heredia, M. A., J. Sohier, C. Gaillard, S. Quillard, M. Dorget, and P. Layrolle. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615, 2008.PubMedCrossRefGoogle Scholar
  79. 79.
    Lucchetta, E. M., J. H. Lee, L. A. Fu, N. H. Patel, and R. F. Ismagilov. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138, 2005.PubMedCrossRefGoogle Scholar
  80. 80.
    Lutolf, M. P. Integration column: artificial ECM: expanding the cell biology toolbox in 3D. Integr. Biol. 1:235–241, 2009.CrossRefGoogle Scholar
  81. 81.
    Lutolf, M. P., and H. M. Blau. Artificial stem cell niches. Adv. Mater. 21:3255–3268, 2009.PubMedCrossRefGoogle Scholar
  82. 82.
    Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462:433–441, 2009.PubMedCrossRefGoogle Scholar
  83. 83.
    Lutolf, M. P., and J. A. Hubbell. Synthesis and physicochemical characterization of end-linked poly (ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4:713–722, 2003.PubMedCrossRefGoogle Scholar
  84. 84.
    Lutolf, M. P., F. E. Weber, H. G. Schmoekel, J. C. Schense, T. Kohler, R. Muller, and J. A. Hubbell. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21:513–518, 2003.PubMedCrossRefGoogle Scholar
  85. 85.
    Lutz, J. F., and Z. Zarafshani. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne. Adv. Drug Deliv. Rev. 60:958–970, 2008.PubMedCrossRefGoogle Scholar
  86. 86.
    Marklein, R. A., and J. A. Burdick. Controlling stem cell fate with material design. Adv. Mater. 22:175–189, 2010.PubMedCrossRefGoogle Scholar
  87. 87.
    Matthews, J. A., G. E. Wnek, D. G. Simpson, and G. L. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238, 2002.PubMedCrossRefGoogle Scholar
  88. 88.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.PubMedCrossRefGoogle Scholar
  89. 89.
    Miller, F. D., and A. Gauthier-Fisher. Home at last: neural stem cell niches defined. Cell Stem Cell 4:507–510, 2009.PubMedCrossRefGoogle Scholar
  90. 90.
    Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.PubMedCrossRefGoogle Scholar
  91. 91.
    Mironov, V., V. Kasyanov, and R. R. Markwald. Organ printing: from bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 22:1–7, 2011.CrossRefGoogle Scholar
  92. 92.
    Moeller, H. C., M. K. Mian, S. Shrivastava, B. G. Chung, and A. Khademhosseini. A microwell array system for stem cell culture. Biomaterials 29:752–763, 2008.PubMedCrossRefGoogle Scholar
  93. 93.
    Mooney, D. J., and H. Vandenburgh. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2:205–213, 2008.PubMedCrossRefGoogle Scholar
  94. 94.
    Moore, K. A., and I. R. Lemischka. Stem cells and their niches. Science 311:1880–1885, 2006.PubMedCrossRefGoogle Scholar
  95. 95.
    Morrison, S. J., and A. C. Spradling. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611, 2008.PubMedCrossRefGoogle Scholar
  96. 96.
    Ngai, T., S. H. Behrens, and H. Auweter. Novel emulsions stabilized by pH and temperature sensitive microgels. Chem. Commun. 331–333, 2005.Google Scholar
  97. 97.
    Norman, J. J., and T. A. Desai. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34:89–101, 2006.PubMedCrossRefGoogle Scholar
  98. 98.
    Oh, S., K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, S. Chien, and S. Jin. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106:2130–2135, 2009.PubMedCrossRefGoogle Scholar
  99. 99.
    Orlando, G., K. J. Wood, R. J. Stratta, J. J. Yoo, A. Atala, and S. Soker. Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91:1310–1317, 2011.PubMedCrossRefGoogle Scholar
  100. 100.
    Ott, H. C., T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.PubMedCrossRefGoogle Scholar
  101. 101.
    Panda, P., S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8:1056–1061, 2008.PubMedCrossRefGoogle Scholar
  102. 102.
    Park, J. Y., S. K. Kim, D. H. Woo, E. J. Lee, J. H. Kim, and S. H. Lee. Differentiation of neural progenitor cells in a microfluidic chip‐generated cytokine gradient. Stem Cells 27:2646–2654, 2009.PubMedCrossRefGoogle Scholar
  103. 103.
    Park, K., K. J. Cho, J. J. Kim, I. H. Kim, and D. K. Han. Functional PLGA scaffolds for chondrogenesis of bone‐marrow‐derived mesenchymal stem cells. Macromol. Biosci. 9:221–229, 2009.PubMedCrossRefGoogle Scholar
  104. 104.
    Patterson, J., and J. A. Hubbell. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31:7836–7845, 2010.PubMedCrossRefGoogle Scholar
  105. 105.
    Peerani, R., B. M. Rao, C. Bauwens, T. Yin, G. A. Wood, A. Nagy, E. Kumacheva, and P. W. Zandstra. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26:4744–4755, 2007.PubMedCrossRefGoogle Scholar
  106. 106.
    Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. S. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog, and L. E. Niklason. Tissue-engineered lungs for in vivo implantation. Science 329:538–541, 2010.PubMedCrossRefGoogle Scholar
  107. 107.
    Place, E. S., N. D. Evans, and M. M. Stevens. Complexity in biomaterials for tissue engineering. Nat. Mater. 8:457–470, 2009.PubMedCrossRefGoogle Scholar
  108. 108.
    Qi, H., Y. Du, L. Wang, H. Kaji, H. Bae, and A. Khademhosseini. Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels. Adv. Mater. 22:5276–5281, 2010.PubMedCrossRefGoogle Scholar
  109. 109.
    Reya, T., A. W. Duncan, L. Ailles, J. Domen, D. C. Scherer, K. Willert, L. Hintz, R. Nusse, and I. L. Weissman. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414, 2003.PubMedCrossRefGoogle Scholar
  110. 110.
    Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.PubMedCrossRefGoogle Scholar
  111. 111.
    Rorth, P. Whence directionality: guidance mechanisms in solitary and collective cell migration. Dev. Cell 20:9–18, 2011.PubMedCrossRefGoogle Scholar
  112. 112.
    Rothenfluh, D. A., H. Bermudez, C. P. O’Neil, and J. A. Hubbell. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 7:248–254, 2008.PubMedCrossRefGoogle Scholar
  113. 113.
    Sacchetti, B., A. Funari, S. Michienzi, S. Di Cesare, S. Piersanti, I. Saggio, E. Tagliafico, S. Ferrari, P. G. Robey, M. Riminucci, and P. Bianco. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336, 2007.PubMedCrossRefGoogle Scholar
  114. 114.
    Saha, K., A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.PubMedCrossRefGoogle Scholar
  115. 115.
    Saha, K., J. F. Pollock, D. V. Schaffer, and K. E. Healy. Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 11:381–387, 2007.PubMedCrossRefGoogle Scholar
  116. 116.
    Sant, S., M. J. Hancock, J. P. Donnelly, D. Iyer, and A. Khademhosseini. Biomimetic gradient hydrogels for tissue engineering. Can. J. Chem. Eng. 88:899–911, 2010.PubMedCrossRefGoogle Scholar
  117. 117.
    Scadden, D. T. The stem-cell niche as an entity of action. Nature 441:1075–1079, 2006.PubMedCrossRefGoogle Scholar
  118. 118.
    Shastri, V. P., I. Martin, and R. Langer. Macroporous polymer foams by hydrocarbon templating. Proc. Natl. Acad. Sci. USA 97:1970–1975, 2000.PubMedCrossRefGoogle Scholar
  119. 119.
    Shivashankar, G. V. Mechanosignaling to the cell nucleus and gene regulation. Annu. Rev. Biophys. 40:361–378, 2011.PubMedCrossRefGoogle Scholar
  120. 120.
    Silva, E. A., E. S. Kim, H. J. Kong, and D. J. Mooney. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl. Acad. Sci. USA 105:14347–14352, 2008.PubMedCrossRefGoogle Scholar
  121. 121.
    Skelley, A. M., O. Kirak, H. Suh, R. Jaenisch, and J. Voldman. Microfluidic control of cell pairing and fusion. Nat. Methods 6:147–152, 2009.PubMedCrossRefGoogle Scholar
  122. 122.
    Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21:3307–3329, 2009.PubMedCrossRefGoogle Scholar
  123. 123.
    Soen, Y., A. Mori, T. D. Palmer, and P. O. Brown. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Syst. Biol. 2:1–14, 2006.CrossRefGoogle Scholar
  124. 124.
    Stevens, M. M., and J. H. George. Exploring and engineering the cell surface interface. Science 310:1135–1138, 2005.PubMedCrossRefGoogle Scholar
  125. 125.
    Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.PubMedCrossRefGoogle Scholar
  126. 126.
    Tekin, H., M. Anaya, M. D. Brigham, C. Nauman, R. Langer, and A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10:2411–2418, 2010.PubMedCrossRefGoogle Scholar
  127. 127.
    Thompson, R. P., M. Reckova, A. de Almeida, M. R. Bigelow, C. P. Stanley, J. B. Spruill, T. T. Trusk, and D. Sedmera. The oldest, toughest cells in the heart. In: Development of the Cardiac Pacemaking and Conduction System, edited by J. Chadwick, and J. Goode. Chichester, UK: Wiley Online Library, 2003, pp. 157–176.CrossRefGoogle Scholar
  128. 128.
    Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147, 1998.PubMedCrossRefGoogle Scholar
  129. 129.
    Uygun, B. E., A. Soto-Gutierrez, H. Yagi, M. L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M. L. Yarmush, and K. Uygun. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–820, 2010.PubMedCrossRefGoogle Scholar
  130. 130.
    Van Noort, D., S. M. Ong, C. Zhang, S. Zhang, T. Arooz, and H. Yu. Stem cells in microfluidics. Biotechnol. Prog. 25:52–60, 2009.PubMedCrossRefGoogle Scholar
  131. 131.
    Vieu, C., F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164:111–117, 2000.CrossRefGoogle Scholar
  132. 132.
    Voog, J., and D. L. Jones. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6:103–115, 2010.PubMedCrossRefGoogle Scholar
  133. 133.
    Vunjak-Novakovic, G., and D. T. Scadden. Biomimetic platforms for human stem cell research. Cell Stem Cell 8:252–261, 2011.PubMedCrossRefGoogle Scholar
  134. 134.
    Ward, J. H., and N. A. Peppas. Kinetic gelation modeling of controlled radical polymerizations. Macromolecules 33:5137–5142, 2000.CrossRefGoogle Scholar
  135. 135.
    Wheeldon, I., A. F. Ahari, and A. Khademhosseini. Microengineering hydrogels for stem cell bioengineering and tissue regeneration. J. Assoc. Lab. Autom. 15:440–448, 2010.CrossRefGoogle Scholar
  136. 136.
    Wheeldon, I., A. Farhadi, A. G. Bick, E. Jabbari, and A. Khademhosseini. Nanoscale tissue engineering: spatial control over cell–materials interactions. Nanotechnology 22:212001, 2011.PubMedCrossRefGoogle Scholar
  137. 137.
    Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.PubMedCrossRefGoogle Scholar
  138. 138.
    Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.PubMedCrossRefGoogle Scholar
  139. 139.
    Yamamoto, K., T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288:H1915–H1924, 2005.PubMedCrossRefGoogle Scholar
  140. 140.
    Yeh, J., Y. Ling, J. M. Karp, J. Gantz, A. Chandawarkar, G. Eng, J. Blumling, III, R. Langer, and A. Khademhosseini. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27:5391–5398, 2006.PubMedCrossRefGoogle Scholar
  141. 141.
    Yim, E. K. F., S. W. Pang, and K. W. Leong. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313:1820–1829, 2007.PubMedCrossRefGoogle Scholar
  142. 142.
    Yoshikawa, H., N. Tamai, T. Murase, and A. Myoui. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J. R. Soc. Interface 6:S341–S348, 2009.PubMedGoogle Scholar
  143. 143.
    Zhang, J., C. Niu, L. Ye, H. Huang, X. He, W. G. Tong, J. Ross, J. Haug, T. Johnson, J. Q. Feng, S. Harris, L. M. Wiedemann, Y. Mishina, and L. Linheng. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841, 2003.PubMedCrossRefGoogle Scholar
  144. 144.
    Zhao, X., J. Kim, C. A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, and D. J. Mooney. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 108:67–72, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Faramarz Edalat
    • 1
    • 2
  • Hojae Bae
    • 1
    • 2
  • Sam Manoucheri
    • 1
    • 2
  • Jae Min Cha
    • 1
    • 2
  • Ali Khademhosseini
    • 1
    • 2
    • 3
  1. 1.Center for Biomedical Engineering, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolCambridgeUSA
  2. 2.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA

Personalised recommendations