Advertisement

Annals of Biomedical Engineering

, Volume 40, Issue 3, pp 750–761 | Cite as

Mitral Valve Annuloplasty

A Quantitative Clinical and Mechanical Comparison of Different Annuloplasty Devices
  • Manuel K. Rausch
  • Wolfgang Bothe
  • John-Peder Escobar Kvitting
  • Julia C. Swanson
  • D. Craig Miller
  • Ellen Kuhl
Article

Abstract

Mitral valve annuloplasty is a common surgical technique used in the repair of a leaking valve by implanting an annuloplasty device. To enhance repair durability, these devices are designed to increase leaflet coaptation, while preserving the native annular shape and motion; however, the precise impact of device implantation on annular deformation, strain, and curvature is unknown. In this article, we quantify how three frequently used devices significantly impair native annular dynamics. In controlled in vivo experiments, we surgically implanted 11 flexible-incomplete, 11 semi-rigid-complete, and 12 rigid-complete devices around the mitral annuli of 34 sheep, each tagged with 16 equally spaced tantalum markers. We recorded four-dimensional marker coordinates using biplane videofluoroscopy, first with device and then without, which were used to create mathematical models using piecewise cubic splines. Clinical metrics (characteristic anatomical distances) revealed significant global reduction in annular dynamics upon device implantation. Mechanical metrics (strain and curvature fields) explained this reduction via a local loss of anterior dilation and posterior contraction. Overall, all three devices unfavorably caused reduction in annular dynamics. The flexible-incomplete device, however, preserved native annular dynamics to a larger extent than the complete devices. Heterogeneous strain and curvature profiles suggest the need for heterogeneous support, which may spawn more rational design of annuloplasty devices using design concepts of functionally graded materials.

Keywords

Mitral annulus Mitral regurgitation Annuloplasty Strain Curvature Dynamics 

Notes

Acknowledgments

The authors thank Paul Chang, Eleazar P. Briones, Lauren R. Davis, and Kathy N. Vo for technical assistance; Maggie Brophy and Sigurd Hartnett for careful marker image digitization; and George T. Daughters III for computation of 4D data from biplane 2D marker coordinates. This study was supported in part by the Deutsche Herzstiftung, Frankfurt, Germany, Research Grant S/06/07 to Wolfgang Bothe; by the U.S.-Norway Fulbright Foundation, the Swedish Heart-Lung Foundation, and the Swedish Society for Medical Research to John-Peder Escobar Kvitting; by the Western States Affiliate American Heart Association Fellowship to Julia C. Swanson; by US National Institutes of Health grants R01 HL29589 and R01 HL67025 to D. Craig Miller; and by the US National Science Foundation grant CAREER award CMMI-0952021 to Ellen Kuhl.

References

  1. 1.
    Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. W. Freed, H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. OGara, R. A. ORourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:E84–E231, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Borghetti, V., M. Campana, C. Scotti, D. Domenighini, P. Totaro, G. Coletti, M. Pagani, and R. Lorusso. Biological versus prosthetic ring in mitral-valve repair: enhancement of mitral annulus dynamics and left-ventricular function with pericardial annuloplasty at long term. Eur. J. Cardiothorac. Surg. 17:431–439, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Bothe, W., P. A. Chang, J. C. Swanson, A. Itoh, K. Arata, N. B. Ingels, and D. C. Miller. Releasable annuloplasty ring insertion—a novel experimental implantation model. Eur. J. Cardiothorac. Surg. 36:830–832, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Göktepe, J. C. Swanson, S. Farahmandnia, N. B. Ingels, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Bothe, W., J. P. E. Kvitting, J. C. Swanson, S. Göktepe, K. N. Vo, N. B. Ingels, and D. C. Miller. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38:340–349, 2010.PubMedCrossRefGoogle Scholar
  6. 6.
    Carlhäll, C., L. Wigström, E. Heiberg, M. Karlsson, A. F. Bolger, and E. Nylander. Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am. J. Physiol. Heart Circ. Physiol. 287:H1836–1841, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Carpentier, A. F. La valvuloplastie reconstitutive. Une nouvelle technique de valvuloplastie mitrale. Presse Medicale 77:251–253, 1969,PubMedGoogle Scholar
  8. 8.
    Carpentier, A. F., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery. Philadelphia, PA: Elsevier Saunders, 2010.Google Scholar
  9. 9.
    Carpentier, A.F., A. Lessana, J. Y. Relland, E. Belli, S. Mihaileanu, A. J. Berrebi, E. Palsky, and D. F. Loulmet. The “Physio-Ring”: an advanced concept in mitral valve annuloplasty. Ann. Thorac. Surg. 60:1177–1186, 1995.PubMedCrossRefGoogle Scholar
  10. 10.
    Cosgrove, D. M., J. M. Arcidi, L. Rodriguez, W. J. Stewart, K. Powell, and J. D. Thomas. Initial experience with the Cosgrove–Edwards Annuloplasty System. Ann. Thorac. Surg. 60:499–503, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Dall’Agata, A., M. A. Taams, P. M. Fioretti, J. R. Roelandt, and L. A. Van Herwerden. Cosgrove–Edwards mitral ring dynamics measured with transesophageal three-dimensional echocardiography. Ann. Thorac. Surg. 65:485–490, 1998.PubMedCrossRefGoogle Scholar
  12. 12.
    Daughters, G., and W. Sanders. A comparison of two analytical systems for 3-D reconstruction from biplane videoradiograms. Proc. Comput. Cardiol. (IEEE) 15:79–82, 1988.Google Scholar
  13. 13.
    De Bonis, M., M. Taramasso, A. Grimaldi, F. Maisano, M. C. Calabrese, A. Verzini, D. Ferrara, and O. Alfieri. The GeoForm annuloplasty ring for the surgical treatment of functional mitral regurgitation in advanced dilated cardiomyopathy. Eur. J. Cardiothorac. Surg. 40:488–495, 2011.PubMedGoogle Scholar
  14. 14.
    De Oliveira, J.M.F., and M. J. Antunes. Mitral valve repair: better than replacement. Heart 92:275–281, 2006.CrossRefGoogle Scholar
  15. 15.
    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, R. C. Gorman, and M.S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    Enriquez-Sarano, M., C. W. Akins, and A. Vahanian. Mitral regurgitation. Lancet 373:1382–1394, 2009.Google Scholar
  17. 17.
    Farin, G. A. Curves and Surfaces for Computer Aided Geometric Design. San Diego: Morgan-Kaufmann Publishers, 2002.Google Scholar
  18. 18.
    Gillinov, A. M., D. M. Cosgrove, T. Shiota, J. Qin, H. Tsujino, W. J. Stewart, J. D. Thomas, M. Porqueddu, J. A. White, and H. Blackstone. Cosgrove-Edwards annuloplasty system: midterm results. Ann. Thorac. Surg. 69:717–721, 2000.PubMedCrossRefGoogle Scholar
  19. 19.
    Glasson, J. R., G. R. Green, J. F. Nistal, P. Dagum, M. Komeda, G. T. Daughters, A. F. Bolger, L. E. Foppiano, N. B. Ingels, and D. C. Miller. Mitral annular size and shape in sheep with annuloplasty rings. J. Thorac. Cardiovasc. Surg. 117:302–309, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Göktepe, S., W. Bothe, J. P. Kvitting, J. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Anterior mitral leaflet curvature in the beating ovine heart. A case study using videofluoroscopic markers and subdivision surfaces. Biomech. Model. Mechanobiol. 9:281–293, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Hu, X., and Q. Zhao. Systematic evaluation of the flexible and rigid annuloplasty ring after mitral valve repair for mitral regurgitation. Eur. J. Cardiothorac. Surg. 40:480–487, 2011.PubMedGoogle Scholar
  22. 22.
    Itoh, A., G. Krishnamurthy, J. Swanson, D. Ennis, W. Bothe, E. Kuhl, M. Karlsson, L. Davis, D. C. Miller, and N. B. Ingels. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296:1766–1773, 2009.CrossRefGoogle Scholar
  23. 23.
    Jensen, M. O., H. Jensen, M. Smerup, R. A. Levine, A. P. Yoganathan, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation 118:S250–5255, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaplan, S. R., G. Bashein, F.H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139:378–387, 2000.PubMedCrossRefGoogle Scholar
  26. 26.
    Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37:1–13, 2009.PubMedCrossRefGoogle Scholar
  27. 27.
    Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson-Birchill, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–H1149, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Krishnamurthy, G., A. Itoh, W. Bothe, J. Swanson, E. Kuhl, M. Karlsson, D. C. Miller, and N. B. Ingels. Stress–strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42:1909–1916, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Krishnamurthy, G., A. Itoh, J. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels. Regional stiffening of the mitral valve anterior leaflet in the beating heart. J. Biomech. 42:2697–2701, 2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Kvitting, J. P. E., W. Bothe, S. Göktepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122:1683–1689, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Lansac, E., K. H. Lim, Y. Shomura, W. A. Goetz, H. S. Lim, N. T. Rice, H. Saber, and C. M. G. Duran. Dynamic balance of the aortomitral junction. J. Thorac. Cardiovasc. Surg. 123:911–918, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Levine, R. A., M. D. Handschumacher, A. J. Sanfilippo, A. A. Hagege, P. Harrigan, J. E. Marshall, and A. E. Weyman. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 80:589–598, 1989.PubMedCrossRefGoogle Scholar
  33. 33.
    McGoon, D. C. Repair of mitral insufficiency due to ruptured chordae tendineae. J. Thorac. Cardiovasc. Surg. 39:357–359, 1960.Google Scholar
  34. 34.
    Niczyporuk, M. A., and D. C. Miller. Automatic tracking and digitization of multiple radiopaque myocardial markers. Comput. Biomed. Res. 24:129–142, 1991.Google Scholar
  35. 35.
    Okada, Y., T. Shomura, Y. Yamaura, and J. Yoshikawa. Comparison of the Carpentier and Duran prosthetic rings used in mitral reconstruction. Ann. Thorac. Surg. 59:658–662, 1995.PubMedCrossRefGoogle Scholar
  36. 36.
    Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64:113–120, 1981.PubMedCrossRefGoogle Scholar
  37. 37.
    Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, M. S. Sacks, A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.PubMedCrossRefGoogle Scholar
  38. 38.
    Rajagopal, A., P. Fischer, E. Kuhl, and P. Steinmann. Natural element analysis of the Cahn–Hilliard phase-field model. Comput. Mech. 46:471–493, 2010.CrossRefGoogle Scholar
  39. 39.
    Rausch, M. K., W. Bothe, J. P. E. Kvitting, S. Göktepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–1157, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–1702, 2011.PubMedCrossRefGoogle Scholar
  41. 41.
    Redmond, J., D. Christiansen, C. Bergin, L. Leuer, T. Ryan, N. Rakow, N. Barka, T. Billstrom, J. A. St Cyr, L. M. Shecterle, and E. Grossi. In-vivo motion of mitral valve annuloplasty devices. J. Heart Valve Dis. 17:110–117, 2008.PubMedGoogle Scholar
  42. 42.
    Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, R. J. Levy, R. C. Gorman, and J.H. Gorman. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369–1377, 2006.PubMedCrossRefGoogle Scholar
  43. 43.
    Salgo, I. S. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717, 2002.PubMedCrossRefGoogle Scholar
  44. 44.
    Stephens, E. H., T. C. Nguyen, A. Itoh, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation 118:S243–S249, 2008.PubMedCrossRefGoogle Scholar
  45. 45.
    Timek, T. A., D. C. Miller. Experimental and clinical assessment of mitral annular area and dynamics: what are we actually measuring? Ann. Thorac. Surg. 72:966–974, 2001.PubMedCrossRefGoogle Scholar
  46. 46.
    van Rijk-Zwikker, G. L., F. Mast, J. J. Schipperheyn, H. A. Huysmans, and A. V. Bruschke. Comparison of rigid and flexible rings for annuloplasty of the porcine mitral valve. Circulation 82:IV58–IV64, 1990.PubMedGoogle Scholar
  47. 47.
    Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuoloplasty system: a finite element study. Ann. Thorac. Surg 84:92-102, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Manuel K. Rausch
    • 1
  • Wolfgang Bothe
    • 2
  • John-Peder Escobar Kvitting
    • 2
  • Julia C. Swanson
    • 2
  • D. Craig Miller
    • 2
  • Ellen Kuhl
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Cardiothoracic SurgeryStanford UniversityStanfordUSA
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA

Personalised recommendations