Advertisement

Annals of Biomedical Engineering

, Volume 40, Issue 3, pp 679–687 | Cite as

Fibrin Gel as Alternative Scaffold for Respiratory Tissue Engineering

  • Christian G. Cornelissen
  • Maren Dietrich
  • Stefan Krüger
  • Jan Spillner
  • Thomas Schmitz-Rode
  • Stefan JockenhoevelEmail author
Article

Abstract

Fibrin gel has proven a valuable scaffold for tissue engineering. Complex geometries can be produced by injection molding; it offers effective cell seeding and can be produced autologous. In order to evaluate its suitability for respiratory tissue engineering, we examined proliferation, functionality, and differentiation of respiratory epithelial cells on fibrin gel in comparison to culture on collagen-coated, microporous membranes. Respiratory epithelial cells formed a confluent layer by day 4, and proliferation showed no significant difference with respect to surface. Measurement of the transepithelial electrical resistance reflected the development of a confluent epithelial cell layer and the subsequent initiation of adequate ion-transfer processes. Appearance of ciliae could be detected at similar time points, and ciliary beating could be observed for cells on both surfaces. Histology and immunohistochemistry of cells grown on fibrin gel revealed the onset of adequate differentiation. As no significant differences in respiratory epithelial cells’ proliferation, function, and differentiation could be observed between cells grown on fibrin gel compared to cells on a collagen-coated, microporous surface, we concluded that fibrin gel might prove a suitable scaffold for respiratory tissue engineering and merits further investigation to overcome the limitations associated with scaffolds currently in use.

Keywords

Respiratory epithelium Ciliary function Transepithelial electrical resistance Culture conditions Airway prosthesis 

Notes

Acknowledgments

This study was supported by a grant from the START program of the Medical Faculty of the RWTH Aachen University.

Conflict of interest

The authors declare that they have no competing financial or other interests.

Supplementary material

Supplementary material 1 (AVI 15588 kb)

Supplementary material 2 (AVI 29199 kb)

References

  1. 1.
    Ahmed, T. A, E. V. Dare, M. T. Hincke. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B Rev. 14:199–215, 2008 [Epub ahead of print].Google Scholar
  2. 2.
    Bader, A., T. Schilling, O. E. Teebken, G. Brandes, T. Herden, G. Steinhoff, and A. Haverich. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14(3):279–284, 1998.PubMedCrossRefGoogle Scholar
  3. 3.
    Coleman, D. L., I. K. Tuet, and J. H. Widdicombe. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol. 246:C335–C359, 1984.Google Scholar
  4. 4.
    Ferguson, D. I., I. J. Wild, and O. H. Wangensteen. Experimental resection of the trachea. Surgery 28:597–619, 1950.PubMedGoogle Scholar
  5. 5.
    Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Galler, K. M., A. C. Cavender, U. Koeklue, L. J. Suggs, G. Schmalz, and R. N. D’Souza. Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen. Med. 6(2):191–200, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Hildebrandt, F., T. Benzing, and N. Katsanis. Ciliopathies. N. Engl. J. Med. 364(16):1533–1543, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Jockenhoevel, S., K. Chalabi, J. S. Sachweh, H. V. Groesdonk, L. Demircan, M. Grossmann, G. Zund, and B. J. Messmer. Tissue engineering: complete autologous valve conduit—a new moulding technique. Thorac. Cardiovasc. Surg. 49(5):287–290, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Koch, S., T. C. Flanagan, J. S. Sachweh, F. Tanios, H. Schnoering, T. Deichmann, V. Ellä, M. Kellomäki, N. Gronloh, T. Gries, R. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31(17):4731–4739, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Kucera, K. A., A. E. Doss, S. S. Dunn, L. A. Clemson, and J. B. Zwischenberger. Tracheal replacements: part 1. ASAIO J. 53:497–505, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    Matloub, H. S., and P. Yu. Engineering a composite neotrachea in a rat model. Plast. Reconstr. Surg. 117(1):123–128, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Mol, A., C. V. Bouten, F. P. Baaijens, G. Zünd, M. I. Turina, and S. P. Hoerstrup. Review article: tissue engineering of semilunar heart valves: current status and future developments. J. Heart Valve Dis. 13(2):272–280, 2004.PubMedGoogle Scholar
  14. 14.
    Park, S. H., B. H. Choi, S. R. Park, and B. H. Min. Chondrogenesis of rabbit mesenchymal stemcells in fibrin/hyaluronan composite scaffold in vitro. Tissue Eng. A 17(9-10):1277–1286, 2011.CrossRefGoogle Scholar
  15. 15.
    Sodian, R., M. Loebe, A. Hein, D. P. Martin, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, T. Lueth, and R. Hetzer. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48(1):12–16, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Stock, U. A., J. P. Vacanti, J. E. Mayer, Jr, and T. Wahlers. Tissue engineering of heart valves—current aspects. Thorac. Cardiovasc. Surg. 50(3):184–193, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Widdicombe, J. H., A. S. Lorne, L. M. Joby, and E. F. Walter. Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. Biotechniques 39:249–255, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamaya, M., W. E. Finkbeiner, S. Y. Chun, and J. H. Widdicombe. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262:L713–L724, 1992.PubMedGoogle Scholar
  19. 19.
    Zhao, F., Y. Zhang, S. Liu, and J. Yu. Artificial trachea reconstruction with two-stage approach using memory-alloy mesh. Chin. Med. J. (Engl) 116(12):1949–1951, 2003.Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Christian G. Cornelissen
    • 1
    • 2
  • Maren Dietrich
    • 1
  • Stefan Krüger
    • 2
  • Jan Spillner
    • 3
  • Thomas Schmitz-Rode
    • 1
  • Stefan Jockenhoevel
    • 1
    Email author
  1. 1.Department of Tissue Engineering & Textile Implants, Institute for Applied Medical EngineeringHelmholtz Institute of the RWTH University HospitalAachenGermany
  2. 2.Department for Internal Medicine—Section for PneumologyUniversity Hospital AachenAachenGermany
  3. 3.Department of Thoracic and Cardiovascular SurgeryUniversity Hospital AachenAachenGermany

Personalised recommendations