Annals of Biomedical Engineering

, Volume 40, Issue 4, pp 828–839 | Cite as

Endothelial Glycocalyx: Permeability Barrier and Mechanosensor

  • F. E. CurryEmail author
  • R. H. Adamson


Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100–150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.


Shear stress Fiber matrix Vascular Endothelium Fluid balance Inflammation Edema 



This study is supported by the NIH HL28607 and the HL44485. The authors thank Prof. Scott I. Simon for permitting the use of the illustration in Fig. 3a.


  1. 1.
    Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486, 1992.PubMedGoogle Scholar
  2. 2.
    Adamson, R. H., J. F. Lenz, X. Zhang, G. N. Adamson, S. Weinbaum, F. E. Curry, et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557:889–907, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Adamson, R. H., R. K. Sarai, S. Weinbaum, and F. E. Curry. Retrograde shear stress modulates rat mesentery microvessel permeability and endothelial adhesion structures. FASEB J. 23:950–955, 2010.Google Scholar
  4. 4.
    Arkill, K. P., C. Knupp, C. C. Michel, C. R. Neal, K. Qvortrup, J. Rostgaard, and J. M. Squire. Similar endothelial glycocalyx structures in microvessels from a range of Mammalian tissues: evidence for a common filtering mechanism? Biophys. J. 101:1046–1056, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Becker, B. F., D. Chappell, D. Bruegger, T. Annecke, and M. Jacob. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc. Res. 87:300–310, 2010.PubMedCrossRefGoogle Scholar
  6. 6.
    Broekhuizen, L. N., B. A. Lemkes, H. L. Mooij, M. C. Meuwese, H. Verberne, F. Holleman, R. O. Schlingemann, M. Nieuwdorp, E. S. Stroes, and H. Vink. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53:2646–2655, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Bruegger, D., M. Rehm, J. Abicht, J. O. Paul, M. Stoeckelhuber, M. Pfirrmann, B. Reichart, B. F. Becker, and F. Christ. Shedding of the endothelial glycocalyx during cardiac surgery: on-pump versus off-pump coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 138:1445–1447, 2009.PubMedCrossRefGoogle Scholar
  8. 8.
    Chappell, D., K. Hofmann-Kiefer, M. Jacob, M. Rehm, J. Briegel, U. Welsch, P. Conzen, and B. F. Becker. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res. Cardiol. 104:78–89, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Chappell, D., M. Jacob, O. Paul, M. Rehm, U. Welsch, M. Stoeckelhuber, P. Conzen, and B. F. Becker. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ. Res. 104:1313–1317, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Clough, G., and C. C. Michel. The role of vesicles in the transport of ferritin through frog endothelium. J. Physiol. 315:127–142, 1981.PubMedGoogle Scholar
  11. 11.
    Clough, G., C. C. Michel, and M. E. Phillips. Inflammatory changes in permeability and ultrastructure of single vessels in the frog mesenteric microcirculation. J. Physiol. 395:99–114, 1988.PubMedGoogle Scholar
  12. 12.
    Constantinescu, A. A., H. Vink, and J. A. Spaan. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23:1541–1547, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Curry, F. R., and R. H. Adamson. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc. Res. 87:218–229, 2010.PubMedCrossRefGoogle Scholar
  14. 14.
    Curry, F. E., and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Desjardins, C., and B. R. Duling. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–H654, 1990.PubMedGoogle Scholar
  16. 16.
    Ebong, E. E., F. P. Macaluso, D. C. Spray, and J. M. Tarbell. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31(8):1908–1915, 2011.PubMedCrossRefGoogle Scholar
  17. 17.
    Feng, J., and S. Weinbaum. Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422:281–317, 2000.CrossRefGoogle Scholar
  18. 18.
    Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–e142, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Forsyth, A. M., J. Wan, P. D. Owrutsky, M. Abkarian, and H. A. Stone. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proc. Natl. Acad. Sci. USA 108:10986–10991, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Gao, L., and H. H. Lipowsky. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80:394–401, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Giantsos, K. M., P. Kopeckova, and R. O. Dull. The use of an endothelium-targeted cationic copolymer to enhance the barrier function of lung capillary endothelial monolayers. Biomaterials 30:5885–5891, 2009.PubMedCrossRefGoogle Scholar
  22. 22.
    Giantsos-Adams, K., V. Lopez-Quintero, P. Kopeckova, J. Kopecek, J. M. Tarbell, and R. Dull. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress. Biomaterials 32:288–294, 2011.PubMedCrossRefGoogle Scholar
  23. 23.
    Gopalan, P. K., A. R. Burns, S. I. Simon, S. Sparks, L. V. McIntire, and C. W. Smith. Preferential sites for stationary adhesion of neutrophils to cytokine-stimulated HUVEC under flow conditions. J. Leukoc. Biol. 68:47–57, 2000.PubMedGoogle Scholar
  24. 24.
    Gouverneur, M., J. A. Spaan, H. Pannekoek, R. D. Fontijn, and H. Vink. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 290:H458–H462, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Gudi, S., I. Huvar, C. R. White, N. L. McKnight, N. Dusserre, G. R. Boss, and J. A. Frangos. Rapid activation of Ras by fluid flow is mediated by Galpha(q) and Gbetagamma subunits of heterotrimeric G proteins in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23:994–1000, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    He, P., and F. E. Curry. Albumin modulation of capillary permeability: role of endothelial cell [Ca2+]i. Am. J. Physiol. 265:H74–H82, 1993.PubMedGoogle Scholar
  27. 27.
    He, P., J. Wang, and M. Zeng. Leukocyte adhesion and microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 278:H1686–H1694, 2000.PubMedGoogle Scholar
  28. 28.
    Henry, C. B., and B. R. Duling. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508–H514, 1999.PubMedGoogle Scholar
  29. 29.
    Henry, C. B., and B. R. Duling. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279:H2815–H2823, 2000.PubMedGoogle Scholar
  30. 30.
    Hierck, B. P., K. Van der Heiden, F. E. Alkemade, S. Van de Pas, J. V. Van Thienen, B. C. Groenendijk, W. H. Bax, A. Van der Laarse, M. C. Deruiter, A. J. Horrevoets, R. E. Poelmann, et al. Primary cilia sensitize endothelial cells for fluid shear stress. Dev. Dyn. 237:725–735, 2008.PubMedCrossRefGoogle Scholar
  31. 31.
    Hu, X., and S. Weinbaum. A new view of Starling’s hypothesis at the microstructural level. Microvasc. Res. 58:281–304, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Huxley, V. H., and F. E. Curry. Albumin modulation of capillary permeability: test of an adsorption mechanism. Am. J. Physiol. 248:H264–H273, 1985.PubMedGoogle Scholar
  33. 33.
    Huxley, V. H., and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. Heart Circ. Physiol. 278:H1177–H1185, 2000.PubMedGoogle Scholar
  34. 34.
    Jacob, R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J. Physiol. 421:55–77, 1990.PubMedGoogle Scholar
  35. 35.
    Jalali, S., M. A. del Pozo, K. Chen, H. Miao, Y. Li, M. A. Schwartz, J. Y. Shyy, and S. Chien. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 98:1042–1046, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Kajimura, M., and C. C. Michel. Flow modulates the transport of K+ through the walls of single perfused mesenteric venules in anaesthetised rats. J. Physiol. 521(Pt 3):665–677, 1999.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim, M. H., N. R. Harris, and J. M. Tarbell. Regulation of capillary hydraulic conductivity in response to an acute change in shear. Am. J. Physiol. Heart Circ. Physiol. 289:H2126–H2135, 2005.PubMedCrossRefGoogle Scholar
  38. 38.
    Laurent, T. C., and J. R. Fraser. Hyaluronan. FASEB J. 6:2397–2404, 1992.PubMedGoogle Scholar
  39. 39.
    Levick, J. R., and C. C. Michel. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87:198–210, 2010.PubMedCrossRefGoogle Scholar
  40. 40.
    Lopez-Quintero, S. V., R. Amaya, M. Pahakis, and J. M. Tarbell. The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. Am. J. Physiol. Heart Circ. Physiol. 296:H1451–H1456, 2009.PubMedCrossRefGoogle Scholar
  41. 41.
    Luft, J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–1783, 1966.PubMedGoogle Scholar
  42. 42.
    Marechal, X., R. Favory, O. Joulin, D. Montaigne, S. Hassoun, B. Decoster, F. Zerimech, and R. Neviere. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29:572–576, 2008.PubMedGoogle Scholar
  43. 43.
    Melchior, B., and J. A. Frangos. Shear-induced endothelial cell–cell junction inclination. Am. J. Physiol. Cell Physiol. 299:C621–C629, 2010.PubMedCrossRefGoogle Scholar
  44. 44.
    Michel, C. C. Capillary permeability and how it may change. J. Physiol. 404:1–29, 1988.PubMedGoogle Scholar
  45. 45.
    Michel, C. C., and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.PubMedGoogle Scholar
  46. 46.
    Mulivor, A. W., and H. H. Lipowsky. Inhibition of glycan shedding and leukocyte–endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666, 2009.PubMedCrossRefGoogle Scholar
  47. 47.
    Muller, W. A. Mechanisms of transendothelial migration of leukocytes. Circ. Res. 105:223–230, 2009.PubMedCrossRefGoogle Scholar
  48. 48.
    Neal, C. R., and D. O. Bates. Measurement of hydraulic conductivity of single perfused Rana mesenteric microvessels between periods of controlled shear stress. J. Physiol. 543:947–957, 2002.PubMedCrossRefGoogle Scholar
  49. 49.
    Nieuwdorp, M., M. C. Meuwese, H. L. Mooij, M. H. van Lieshout, A. Hayden, M. Levi, J. C. Meijers, C. Ince, J. J. Kastelein, H. Vink, and E. S. Stroes. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 202:296–303, 2009.PubMedCrossRefGoogle Scholar
  50. 50.
    Nieuwdorp, M., H. L. Mooij, J. Kroon, B. Atasever, J. A. Spaan, C. Ince, F. Holleman, M. Diamant, R. J. Heine, J. B. Hoekstra, J. J. Kastelein, E. S. Stroes, and H. Vink. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132, 2006.PubMedCrossRefGoogle Scholar
  51. 51.
    Nieuwdorp, M., T. W. van Haeften, M. C. Gouverneur, H. L. Mooij, M. H. van Lieshout, M. Levi, J. C. Meijers, F. Holleman, J. B. Hoekstra, H. Vink, J. J. Kastelein, and E. S. Stroes. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486, 2006.PubMedCrossRefGoogle Scholar
  52. 52.
    Noble, M. I., A. J. Drake-Holland, and H. Vink. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101:513–518, 2008.PubMedCrossRefGoogle Scholar
  53. 53.
    Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54:1754–1757, 1958.CrossRefGoogle Scholar
  54. 54.
    Ogston, A. G., and C. C. Michel. General descriptions of passive transport of neutral solute and solvent through membranes. Prog. Biophys. Mol. Biol. 34:197–217, 1978.PubMedCrossRefGoogle Scholar
  55. 55.
    Perrin, R. M., S. J. Harper, and D. O. Bates. A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem. Biophys. 49:65–72, 2007.PubMedCrossRefGoogle Scholar
  56. 56.
    Platts, S. H., and B. R. Duling. Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ. Res. 94:77–82, 2004.PubMedCrossRefGoogle Scholar
  57. 57.
    Potter, D. R., and E. R. Damiano. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–776, 2008.PubMedCrossRefGoogle Scholar
  58. 58.
    Pries, A. R., and W. M. Kuebler. Normal endothelium. Handb. Exp. Pharmacol. 1–40, 2006.Google Scholar
  59. 59.
    Pries, A. R., T. W. Secomb, H. Jacobs, M. Sperandio, K. Osterloh, and P. Gaehtgens. Microvascular blood flow resistance: role of endothelial surface layer. Am. J. Physiol. 273:H2272–H2279, 1997.PubMedGoogle Scholar
  60. 60.
    Rehm, M., D. Bruegger, F. Christ, P. Conzen, M. Thiel, M. Jacob, D. Chappell, M. Stoeckelhuber, U. Welsch, B. Reichart, K. Peter, and B. F. Becker. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906, 2007.PubMedCrossRefGoogle Scholar
  61. 61.
    Rehm, M., M. Haller, V. Orth, U. Kreimeier, M. Jacob, H. Dressel, S. Mayer, H. Brechtelsbauer, and U. Finsterer. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856, 2001.PubMedCrossRefGoogle Scholar
  62. 62.
    Reitsma, S., D. W. Slaaf, H. Vink, M. A. van Zandvoort, and M. G. oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454:345–359, 2007.PubMedCrossRefGoogle Scholar
  63. 63.
    Renkin, E. M., and F. E. Curry. Transport of water and solutes across capillary endothelium. In: Membrane Transport in Physiology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Heidelberg: Springer, 1978, pp. 1–45.Google Scholar
  64. 64.
    Rostgaard, J., and K. Qvortrup. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc. Res. 53:1–13, 1997.PubMedCrossRefGoogle Scholar
  65. 65.
    Rostgaard, J., and K. Qvortrup. Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier? Cells Tissues Organs 170:132–138, 2002.PubMedCrossRefGoogle Scholar
  66. 66.
    Secomb, T. W., R. Hsu, and A. R. Pries. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–H636, 2001.PubMedGoogle Scholar
  67. 67.
    Simon, S. I., M. R. Sarantos, C. E. Green, and U. Y. Schaff. Leukocyte recruitment under fluid shear: mechanical and molecular regulation within the inflammatory synapse. Clin. Exp. Pharmacol. Physiol. 36:217–224, 2009.PubMedCrossRefGoogle Scholar
  68. 68.
    Singleton, P. A., S. M. Dudek, S. F. Ma, and J. G. Garcia. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation. Novel role for hyaluronan and CD44 receptor family. J. Biol. Chem. 281:34381–34393, 2006.PubMedCrossRefGoogle Scholar
  69. 69.
    Sperandio, M., C. A. Gleissner, and K. Ley. Glycosylation in immune cell trafficking. Immunol. Rev. 230:97–113, 2009.PubMedCrossRefGoogle Scholar
  70. 70.
    Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.PubMedCrossRefGoogle Scholar
  71. 71.
    Stevens, A. P., V. Hlady, and R. O. Dull. Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L328–L335, 2007.PubMedCrossRefGoogle Scholar
  72. 72.
    Sumagin, R., J. M. Kuebel, and I. H. Sarelius. Leukocyte rolling and adhesion both contribute to regulation of microvascular permeability to albumin via ligation of ICAM-1. Am. J. Physiol. Cell Physiol. 301(4):C777–C779, 2011.CrossRefGoogle Scholar
  73. 73.
    Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–330, 2010.PubMedCrossRefGoogle Scholar
  74. 74.
    Tarbell, J. M., and M. Y. Pahakis. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–350, 2006.PubMedCrossRefGoogle Scholar
  75. 75.
    Thi, M. M., J. M. Tarbell, S. Weinbaum, and D. C. Spray. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. USA 101:16483–16488, 2004.PubMedCrossRefGoogle Scholar
  76. 76.
    Trung, D. T., and B. Wills. Systemic vascular leakage associated with dengue infections—the clinical perspective. Curr. Top. Microbiol. Immunol. 338:57–66, 2010.PubMedCrossRefGoogle Scholar
  77. 77.
    Turner, M. R., G. Clough, and C. C. Michel. The effects of cationised ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc. Res. 25:205–222, 1983.PubMedCrossRefGoogle Scholar
  78. 78.
    Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.PubMedCrossRefGoogle Scholar
  79. 79.
    van den Berg, B. M., H. Vink, and J. A. Spaan. The endothelial glycocalyx protects against myocardial edema. Circ. Res. 92:592–594, 2003.PubMedCrossRefGoogle Scholar
  80. 80.
    van Haaren, P. M., E. VanBavel, H. Vink, and J. A. Spaan. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am. J. Physiol. Heart Circ. Physiol. 285:H2848–H2856, 2003.PubMedGoogle Scholar
  81. 81.
    VanTeeffelen, J. W., J. Brands, and H. Vink. Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc. Res. 87:311–319, 2010.PubMedCrossRefGoogle Scholar
  82. 82.
    VanTeeffelen, J. W., A. A. Constantinescu, J. Brands, J. A. Spaan, and H. Vink. Bradykinin- and sodium nitroprusside-induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties. J. Physiol. 586:3207–3218, 2008.PubMedCrossRefGoogle Scholar
  83. 83.
    Vink, H., A. A. Constantinescu, and J. A. Spaan. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet–endothelial cell adhesion. Circulation 101:1500–1502, 2000.PubMedGoogle Scholar
  84. 84.
    Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.PubMedGoogle Scholar
  85. 85.
    Vink, H., and B. R. Duling. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am. J. Physiol. Heart Circ. Physiol. 278:H285–H289, 2000.PubMedGoogle Scholar
  86. 86.
    Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.PubMedCrossRefGoogle Scholar
  87. 87.
    Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–7995, 2003.PubMedCrossRefGoogle Scholar
  88. 88.
    Werthmann, R. C., M. J. Lohse, and M. Bunemann. Temporally resolved cAMP monitoring in endothelial cells uncovers a thrombin-induced [cAMP] elevation mediated via the Ca(2)+-dependent production of prostacyclin. J. Physiol. 589:181–193, 2011.PubMedCrossRefGoogle Scholar
  89. 89.
    Williams, D. A. A shear stress component to the modulation of capillary hydraulic conductivity (Lp). Microcirculation 3:229–232, 1996.PubMedCrossRefGoogle Scholar
  90. 90.
    Wojciechowski, J. C., and I. H. Sarelius. Preferential binding of leukocytes to the endothelial junction region in venules in situ. Microcirculation 12:349–359, 2005.PubMedCrossRefGoogle Scholar
  91. 91.
    Xu, D., T. L. Wang, L. P. Sun, and Q. D. You. Recent progress of small molecular VEGFR inhibitors as anticancer agents. Mini Rev. Med. Chem. 11:18–31, 2011.PubMedCrossRefGoogle Scholar
  92. 92.
    Yao, Y., A. Rabodzey, and C. F. Dewey, Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H1023–H1030, 2007.PubMedCrossRefGoogle Scholar
  93. 93.
    Yu, J., S. Bergaya, T. Murata, I. F. Alp, M. P. Bauer, M. I. Lin, M. Drab, T. V. Kurzchalia, R. V. Stan, and W. C. Sessa. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116:1284–1291, 2006.PubMedCrossRefGoogle Scholar
  94. 94.
    Yuan, Y., H. J. Granger, D. C. Zawieja, and W. M. Chilian. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am. J. Physiol. 263:H641–H646, 1992.PubMedGoogle Scholar
  95. 95.
    Zeng, M., H. Zhang, C. Lowell, and P. He. Tumor necrosis factor-alpha-induced leukocyte adhesion and microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 283:H2420–H2430, 2002.PubMedGoogle Scholar
  96. 96.
    Zhang, X., R. H. Adamson, F. E. Curry, and S. Weinbaum. Transient regulation of transport by pericytes in venular microvessels via trapped microdomains. Proc. Natl. Acad. Sci. USA 105:1374–1379, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Department of Physiology and Membrane Biology, School of MedicineUniversity of California at DavisDavisUSA

Personalised recommendations