Annals of Biomedical Engineering

, Volume 40, Issue 2, pp 378–397 | Cite as

Confocal Endomicroscopy: Instrumentation and Medical Applications

  • Joey M. Jabbour
  • Meagan A. Saldua
  • Joel N. Bixler
  • Kristen C. MaitlandEmail author


Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 and 3 μm, respectively, field of view as large as 800 × 450 μm, and objective lens and total probe outer diameters down to 0.35 and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy.


Microendoscope Endomicroscope Optical imaging Fiber optics In vivo Fluorescence Reflectance 



We gratefully acknowledge funding from NIH R01 CA138653.


  1. 1.
    Bajbouj, M., M. Vieth, T. Rosch, S. Miehlke, V. Becker, M. Anders, H. Pohl, A. Madisch, T. Schuster, R. M. Schmid, and A. Meining. Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett’s esophagus. Endoscopy 42:435–440, 2010.PubMedGoogle Scholar
  2. 2.
    Bargiel, S., C. Gorecki, T. Verdot, K. Laszczyk, J. Albero, and L. El Fissi. Electrostatically driven optical Z-axis scanner with thermally bonded glass microlens. Proc. Eng. 5:762–765, 2010.Google Scholar
  3. 3.
    Barretto, R. P., B. Messerschmidt, and M. J. Schnitzer. In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6:511–512, 2009.PubMedGoogle Scholar
  4. 4.
    Becker, A., C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat. Biotechnol. 19:327–331, 2001.PubMedGoogle Scholar
  5. 5.
    Benschop, J., and G. Vanrosmalen. Confocal compact scanning optical microscope based on compact-disk technology. Appl. Opt. 30:1179–1184, 1991.PubMedGoogle Scholar
  6. 6.
    Boudoux, C., S. C. Leuin, W. Y. Oh, M. J. Suter, A. E. Desjardins, B. J. Vakoc, B. E. Bouma, C. J. Hartnick, and G. J. Tearney. Preliminary evaluation of noninvasive microscopic imaging techniques for the study of vocal fold development. J. Voice 23:269–276, 2009.PubMedGoogle Scholar
  7. 7.
    Boudoux, C., S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney. Rapid wavelength-swept spectrally encoded confocal microscopy. Opt. Express 13:8214–8221, 2005.PubMedGoogle Scholar
  8. 8.
    Carlson, K. D., M. D. Chidley, K.-B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. R. Richards-Kortum. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens. Appl. Opt. 44:1792–1797, 2005.PubMedGoogle Scholar
  9. 9.
    Carlson, K., I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum. Confocal microscopy: imaging cervical precancerous lesions. Gynecol. Oncol. 99:S84–S88, 2005.PubMedGoogle Scholar
  10. 10.
    Cavanagh, H. D., W. M. Petroll, and J. V. Jester. The application of confocal microscopy to the study of living systems. Neurosci. Biobehav. Rev. 17:483–498, 1993.PubMedGoogle Scholar
  11. 11.
    Chidley, M. D., K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Appl. Opt. 45:2545–2554, 2006.PubMedGoogle Scholar
  12. 12.
    Collier, T., C. Smithpeter, B. Cowman, R. Drezek, M. Descour, and R. Richards-Kortum. Fiber-optic confocal microscope for biological imaging. In: Conference on Lasers and Electro-Optics: OSA, pp. 128–129, 1998.Google Scholar
  13. 13.
    Corcuff, P., and J. L. Leveque. In vivo vision of the human skin with the tandem scanning microscope. Dermatology 186:50–54, 1993.PubMedGoogle Scholar
  14. 14.
    Dabbs, T., and M. Glass. Fiber-optic confocal microscope: FOCON. Appl. Opt. 31:3030–3035, 1992.PubMedGoogle Scholar
  15. 15.
    Delaney, P. M., M. R. Harris, and R. G. King. Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33:573–577, 1994.PubMedGoogle Scholar
  16. 16.
    Delaney, P. M., R. G. King, J. R. Lambert, and M. R. Harris. Fiber optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo. J. Anat. 184:157–160, 1994.PubMedGoogle Scholar
  17. 17.
    Dickensheets, D. L. Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments. J. Micro-Nanolith MEMS 7:021008, 2008.Google Scholar
  18. 18.
    Dickensheets, D. L., and G. S. Kino. Scanned optical fiber confocal microscope. In: Proceedings of SPIE, pp. 39–47, 1994.Google Scholar
  19. 19.
    Dickensheets, D. L., and G. S. Kino. Micromachined scanning confocal optical microscope. Opt. Lett. 21:764–766, 1996.PubMedGoogle Scholar
  20. 20.
    Dickensheets, D. L., and G. S. Kino. Silicon-micromachined scanning confocal optical microscope. J. Microelectromech. Syst. 7:38–47, 1998.Google Scholar
  21. 21.
    Drezek, R. A., T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen. Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am. J. Obstet. Gynecol. 182:1135–1139, 2000.PubMedGoogle Scholar
  22. 22.
    Dunbar, K., and M. Canto. Confocal endomicroscopy. Curr. Opin. Gastroenterol. 24:631–637, 2008.PubMedGoogle Scholar
  23. 23.
    Engelbrecht, C. J., R. S. Johnston, E. J. Seibel, and F. Helmchen. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16:5556–5564, 2008.PubMedGoogle Scholar
  24. 24.
    Farahati, B., O. Stachs, F. Prall, J. Stave, R. Guthoff, H. W. Pau, and T. Just. Rigid confocal endoscopy for in vivo imaging of experimental oral squamous intra-epithelial lesions. J. Oral Pathol. Med. 39:318–327, 2010.PubMedGoogle Scholar
  25. 25.
    Feng, Z., L. Wang, and H. Duan. Confocal fluorescence microendoscopy using a digital micro-mirror device. In: Proc. SPIE—Optics in Health Care and Biomedical Optics IV, Beijing, China, SPIE, pp. 78451M, 2010.Google Scholar
  26. 26.
    Flusberg, B. A., E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer. Fiber-optic fluorescence imaging. Nat. Methods 2:941–950, 2005.PubMedGoogle Scholar
  27. 27.
    Flusberg, B. A., J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt. Lett. 30:2272–2274, 2005.PubMedGoogle Scholar
  28. 28.
    Gheonea, D. I., A. Saftoiu, T. Ciurea, C. Popescu, C. V. Georgescu, and A. Malos. Confocal laser endomicroscopy of the colon. J. Gastrointestin. Liver Dis. 19:207–211, 2010.PubMedGoogle Scholar
  29. 29.
    Gillenwater, A., V. Papadimitrakopoulou, and R. Richards-Kortum. Oral premalignancy: new methods of detection and treatment. Curr. Oncol. Rep. 8:146–154, 2006.PubMedGoogle Scholar
  30. 30.
    Giniūnas, L., R. Juškaitis, and S. V. Shatalin. Scanning fibre-optic microscope. Electron. Lett. 27:724–726, 1991.Google Scholar
  31. 31.
    Giniūnas, L., R. Juškaitis, and S. V. Shatalin. Endoscope with optical sectioning capability. Appl. Opt. 32:2888–2890, 1993.PubMedGoogle Scholar
  32. 32.
    Gmitro, A. F., and D. Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18:565–567, 1993.PubMedGoogle Scholar
  33. 33.
    Gmitro, A. F., and A. R. Rouse. Development and use of a confocal microendoscope for in vivo histopathologic diagnosis. In: Proceedings of SPIE—Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, San Jose, CA, USA, SPIE, pp. 41–48, 2001.Google Scholar
  34. 34.
    Goetz, M., T. Toermer, M. Vieth, K. Dunbar, A. Hoffman, P. R. Galle, M. F. Neurath, P. Delaney, and R. Kiesslich. Simultaneous confocal laser endomicroscopy and chromoendoscopy with topical cresyl violet. Gastrointest. Endosc. 70:959–968, 2009.PubMedGoogle Scholar
  35. 35.
    Goetz, M., A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich. In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 138:435–446, 2010.PubMedGoogle Scholar
  36. 36.
    Gu, M., C. J. R. Sheppard, and X. Gan. Image formation in a fiber-optical confocal scanning microscope. J. Opt. Soc. Am. A 8:1755–1761, 1991.Google Scholar
  37. 37.
    Haxel, B. R., M. Goetz, R. Kiesslich, and J. Gosepath. Confocal endomicroscopy: a novel application for imaging of oral and oropharyngeal mucosa in human. Eur. Arch. Otorhinolaryngol. 267:443–448, 2010.PubMedGoogle Scholar
  38. 38.
    Helmchen, F., M. S. Fee, D. W. Tank, and W. Denk. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31:903–912, 2001.PubMedGoogle Scholar
  39. 39.
    Hendriks, B. H. W., W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ‘t Hooft, G. W. Lucassen, and N. Mihajlovic. High-resolution resonant and nonresonant fiber-scanning confocal microscope. J. Biomed. Opt. 16:026007, 2011.PubMedGoogle Scholar
  40. 40.
    Hofmann, U., S. Muehlmann, M. Witt, K. Doerschel, R. Schuetz, and B. Wagner. Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope. In: Proc. SPIE—Miniaturized Systems with Micro-Optics and MEMS, Santa Clara, CA, USA, SPIE, pp. 29–38, 1999.Google Scholar
  41. 41.
    Howlader, N., A. M. Noone, M. Krapcho, N. Neyman, R. Aminou, W. Waldron, S. F. Altekruse, C. L. Kosary, J. Ruhl, Z. Tatalovich, H. Cho, A. Mariotto, M. P. Eisner, D. R. Lewis, H. S. Chen, E. J. Feuer, K. A. Cronin, and B. K. Edwards. SEER Cancer Statistics Review, 1975–2008. National Cancer Institute: Bethesda, MD (based on November 2010 SEER data submission, posted to the SEER web site, 2011).Google Scholar
  42. 42.
    Hsiung, P. L., J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14:454–458, 2008.PubMedGoogle Scholar
  43. 43.
    Hsu, E. R., A. M. Gillenwater, M. Q. Hasan, M. D. Williams, A. K. El-Naggar, and R. R. Richards-Kortum. Real-time detection of epidermal growth factor receptor expression in fresh oral cavity biopsies using a molecular-specific contrast agent. Int. J. Cancer. 118:3062–3071, 2006.PubMedGoogle Scholar
  44. 44.
    Jester, J. V., P. M. Andrews, W. M. Petroll, M. A. Lemp, and H. D. Cavanagh. In vivo, real-time confocal imaging. J. Electron Microsc. Tech. 18:50–60, 1991.PubMedGoogle Scholar
  45. 45.
    Jung, J. C., A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92:3121–3133, 2004.PubMedGoogle Scholar
  46. 46.
    Juškaitis, R., F. Reinholz, and T. Wilson. Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection. Electron. Lett. 28:986–988, 1992.Google Scholar
  47. 47.
    Juškaitis, R., and T. Wilson. Direct-view fiberoptic confocal microscope. Opt. Lett. 19:1906–1908, 1994.PubMedGoogle Scholar
  48. 48.
    Juškaitis, R., T. Wilson, and T. F. Watson. Real-time white light reflection confocal microscopy using a fibre-optic bundle. Scanning 19:15–19, 1997.Google Scholar
  49. 49.
    Just, T., J. Stave, C. Boltze, A. Wree, B. Kramp, R. F. Guthoff, and H. W. Pau. Laser scanning microscopy of the human larynx mucosa: a preliminary, ex vivo study. Laryngoscope 116:1136–1141, 2006.PubMedGoogle Scholar
  50. 50.
    Kakeji, Y., S. Yamaguchi, D. Yoshida, K. Tanoue, M. Ueda, A. Masunari, T. Utsunomiya, M. Imamura, H. Honda, Y. Maehara, and M. Hashizume. Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study. Endoscopy 38:886–890, 2006.PubMedGoogle Scholar
  51. 51.
    Kester, R. T., T. Christenson, R. Richards-Kortum, and T. S. Tkaczyk. Low cost, high performance, self-aligning miniature optical systems. Appl. Opt. 48:3375–3384, 2009.PubMedGoogle Scholar
  52. 52.
    Kester, R. T., T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum. High numerical aperture microendoscope objective for a fiber confocal reflectance microscope. Opt. Express 15:2409–2420, 2007.PubMedGoogle Scholar
  53. 53.
    Kiesslich, R., J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127:706–713, 2004.PubMedGoogle Scholar
  54. 54.
    Kiesslich, R., M. Goetz, J. Burg, M. Stolte, E. Siegel, M. J. Maeurer, S. Thomas, D. Strand, P. R. Galle, and M. F. Neurath. Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy. Gastroenterology 128:2119–2123, 2005.PubMedGoogle Scholar
  55. 55.
    Kiesslich, R., M. Goetz, M. Vieth, P. R. Galle, and M. F. Neurath. Confocal laser endomicroscopy. Gastrointest. Endosc. Clin. N. Am. 15:715–731, 2005.PubMedGoogle Scholar
  56. 56.
    Kiesslich, R., L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 4:979–987, 2006.PubMedGoogle Scholar
  57. 57.
    Kim, Y.-D., M. Ahn, and D.-G. Gweon. Design of small confocal endo-microscopic probe working under multi-wavelength environment. In: Proc. SPIE—Endoscopic Microscopy V. San Francisco, CA, USA, SPIE, pp. 75580S, 2010.Google Scholar
  58. 58.
    Kim, P., E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods 7:303–305, 2010.PubMedGoogle Scholar
  59. 59.
    Kim, P., M. Puoris’haag, D. Cote, C. P. Lin, and S. H. Yun. In vivo confocal and multiphoton microendoscopy. J. Biomed. Opt. 13:010501, 2008.PubMedGoogle Scholar
  60. 60.
    Kimura, S., and T. Wilson. Confocal scanning optical microscope using single-mode fiber for signal detection. Appl. Opt. 30:2143–2150, 1991.PubMedGoogle Scholar
  61. 61.
    Kitabatake, S., Y. Niwa, R. Miyahara, A. Ohashi, T. Matsuura, Y. Iguchi, Y. Shimoyama, T. Nagasaka, O. Maeda, T. Ando, N. Ohmiya, A. Itoh, Y. Hirooka, and H. Goto. Confocal endomicroscopy for the diagnosis of gastric cancer in vivo. Endoscopy 38:1110–1114, 2006.PubMedGoogle Scholar
  62. 62.
    Knittel, J., L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188:267–273, 2001.Google Scholar
  63. 63.
    Koester, C. J., J. D. Auran, H. D. Rosskothen, G. J. Florakis, and R. B. Tackaberry. Clinical microscopy of the cornea utilizing optical sectioning and a high-numerical-aperture objective. J. Opt. Soc. Am. A 10:1670–1679, 1993.PubMedGoogle Scholar
  64. 64.
    Kumar, K., R. Avritscher, Y. M. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. J. Zhang. Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging. Biomed. Microdevices 12:223–233, 2010.PubMedGoogle Scholar
  65. 65.
    Kwon, S., and L. P. Lee. Micromachined transmissive scanning confocal microscope. Opt. Lett. 29:706–708, 2004.PubMedGoogle Scholar
  66. 66.
    Laemmel, E., M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut. Fibered confocal fluorescence microscopy (Cell-viZio TM) facilitates extended imaging in the field of microcirculation. J. Vasc. Res. 41:400–411, 2004.PubMedGoogle Scholar
  67. 67.
    Landau, S. M., C. Liang, R. T. Kester, T. S. Tkaczyk, and M. R. Descour. Design and evaluation of an ultra-slim objective for in vivo deep optical biopsy. Opt. Express 18:4758–4775, 2010.PubMedGoogle Scholar
  68. 68.
    Lane, P. M., A. L. P. Dlugan, R. Richards-Kortum, and C. E. MacAulay. Fiber-optic confocal microscopy using a spatial light modulator. Opt. Lett. 25:1780–1782, 2000.PubMedGoogle Scholar
  69. 69.
    Lane, P. M., R. P. Elliott, and C. E. MacAulay. Confocal microendoscopy with chromatic sectioning. In: Proceedings of SPIE—Spectral Imaging: Instrumentation, Applications, and Analysis II, San Jose, CA, USA, SPIE, pp. 23–26, 2003.Google Scholar
  70. 70.
    Lane, P. M., S. Lam, A. McWilliams, J. C. Le Riche, M. W. Anderson, and C. E. MacAulay. Confocal fluorescence microendoscopy of bronchial epithelium. J. Biomed. Opt. 14:024008, 2009.PubMedGoogle Scholar
  71. 71.
    Le Goualher, G., A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache. Towards optical biopsies with an integrated fibered confocal fluorescence microscope. Part II. In: Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, Saint-Malo, France, pp. 761–768, 2004.Google Scholar
  72. 72.
    Leong, R. W., N. Q. Nguyen, C. G. Meredith, S. Al-Sohaily, D. Kukic, P. M. Delaney, E. R. Murr, J. Yong, N. D. Merrett, and A. V. Biankin. In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease. Gastroenterology 135:1870–1876, 2008.PubMedGoogle Scholar
  73. 73.
    Liang, C., M. R. Descour, K. B. Sung, and R. Richards-Kortum. Fiber confocal reflectance microscope (FCRM) for in vivo imaging. Opt. Express 9:821–830, 2001.PubMedGoogle Scholar
  74. 74.
    Liang, C., K. B. Sung, R. R. Richards-Kortum, and M. R. Descour. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41:4603–4610, 2002.PubMedGoogle Scholar
  75. 75.
    Lin, C. P., and R. H. Webb. Fiber-coupled multiplexed confocal microscope. Opt. Lett. 25:954–956, 2000.PubMedGoogle Scholar
  76. 76.
    Liu, J. T. C., N. O. Loewke, M. J. Mandella, R. M. Levenson, J. M. Crawford, and C. H. Contag. Point-of-care pathology with miniature microscopes. Anal. Cell Pathol. 34:81–98, 2011.Google Scholar
  77. 77.
    Liu, J. T. C., M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner. Opt. Lett. 32:256–258, 2007.PubMedGoogle Scholar
  78. 78.
    Luck, B. L., K. D. Carlson, A. C. Bovik, and R. R. Richards-Kortum. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue. IEEE Trans. Image Proc. 14:1265–1276, 2005.Google Scholar
  79. 79.
    Maitland, K. C., A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 44:1059–1066, 2008.PubMedGoogle Scholar
  80. 80.
    Maitland, K. C., H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum. Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging. Opt. Express 14:8604–8612, 2006.PubMedGoogle Scholar
  81. 81.
    Meining, A., D. Saur, M. Bajbouj, V. Becker, E. Peltier, H. Hoefler, C. H. Von Weyhern, R. M. Schmid, and C. Prinz. In vivo histopathology for detection of gastrointestinal neoplasia with a portable, confocal miniprobe: an examiner blinded analysis. Clin. Gastroenterol. Hepatol. 5:1261–1267, 2007.PubMedGoogle Scholar
  82. 82.
    Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10:128–138, 1988.Google Scholar
  83. 83.
    Moghimi, M. J., B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets. MOEMS deformable mirrors for focus control in vital microscopy. J. Micro-Nanolith. MEMS. 10:023005, 2011.Google Scholar
  84. 84.
    Murakami, K. A miniature confocal optical scanning microscope for endoscope. Proceedings of SPIE—MOEMS Display and Imaging Systems III, San Jose, CA, USA, SPIE, pp. 119–131, 2005.Google Scholar
  85. 85.
    Murakami, K., A. Murata, T. Suga, H. Kitagawa, Y. Kamiya, M. Kubo, K. Matsumoto, H. Miyajima, and M. Katashiro. A miniature confocal optical microscope with MEMS gimbal scanner. In: Proceedings of the 12th International Conference on TRANSDUCERS, Solid-State Sensor, Actuators and Microsystems. Boston, MA, USA, pp. 587–590, 2003.Google Scholar
  86. 86.
    Myaing, M. T., D. J. MacDonald, and X. Li. Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31:1076–1078, 2006.PubMedGoogle Scholar
  87. 87.
    Nakao, M., S. Yoshida, S. Tanaka, Y. Takemura, S. Oka, M. Yoshihara, and K. Chayama. Optical biopsy of early gastroesophageal cancer by catheter-based reflectance-type laser-scanning confocal microscopy. J. Biomed. Opt. 13:054043, 2008.PubMedGoogle Scholar
  88. 88.
    National Library of Medicine (US) National Center for Biotechnology Information. Molecular Imaging and Contrast Agent Database (MICAD). 2011.
  89. 89.
    New, K. C., W. M. Petroll, A. Boyde, L. Martin, P. Corcuff, J. L. Leveque, M. A. Lemp, H. D. Cavanagh, and J. V. Jester. In vivo imaging of human teeth and skin using real-time confocal microscopy. Scanning 13:369–372, 1991.Google Scholar
  90. 90.
    Osdoit, A., F. Lacombe, C. Cave, S. Loiseau, and E. Peltier. To see… the unseeable: confocal miniprobes for routine microscopic imaging during endoscopy. In: Proceedings of SPIE—Endoscopic Microscopy II, San Jose, CA, USA, pp. 64320F, 2007.Google Scholar
  91. 91.
    Ota, T., H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu. In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy. J. Biomed. Opt. 10:024010, 2005.PubMedGoogle Scholar
  92. 92.
    Petran, M., M. Hadravsky, J. Benes, and A. Boyde. In vivo microscopy using the tandem scanning microscope. Ann. N Y Acad. Sci. 483:440–447, 1986.PubMedGoogle Scholar
  93. 93.
    Petroll, W. M., J. V. Jester, and H. D. Cavanagh. In vivo confocal imaging: general principles and applications. Scanning 16:131–149, 1994.PubMedGoogle Scholar
  94. 94.
    Pierce, M. C., D. J. Javier, and R. Richards-Kortum. Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int. J. Cancer 123:1979–1990, 2008.PubMedGoogle Scholar
  95. 95.
    Pillai, R. S., D. Lorenser, and D. D. Sampson. Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Opt. Express 19:7213–7221, 2011.PubMedGoogle Scholar
  96. 96.
    Pitris, C., B. E. Bouma, M. Shiskov, and G. J. Tearney. A GRISM-based probe for spectrally encoded confocal microscopy. Opt. Express 11:120–124, 2003.PubMedGoogle Scholar
  97. 97.
    Piyawattanametha, W., H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag. 3-D near-infrared fluorescence imaging using an MEMS-based miniature dual-axis confocal microscope. IEEE J. Sel. Top Quant. 15:1344–1350, 2009.Google Scholar
  98. 98.
    Poland, S. P., L. Li, D. Uttamchandani, and J. M. Girkin. A confocal micro-imaging system incorporating a thermally actuated two axis MEMS scanner. In: Proceedings of SPIE—Endoscopic Microscopy IV, San Jose, CA, USA, SPIE, pp. 717203–717209, 2009.Google Scholar
  99. 99.
    Polglase, A., W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and lower-GI tract. Gastrointest. Endosc. 62:686–695, 2005.PubMedGoogle Scholar
  100. 100.
    Ra, H. J., W. Piyawattanametha, M. J. Mandella, P. L. Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard. Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope. Opt. Express 16:7224–7232, 2008.PubMedGoogle Scholar
  101. 101.
    Rajadhyaksha, M., R. R. Anderson, and R. H. Webb. Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl. Opt. 38:2105–2115, 1999.PubMedGoogle Scholar
  102. 102.
    Rajadhyaksha, M., S. Gonzalez, J. M. Zavislan, R. R. Anderson, and R. H. Webb. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 113:293–303, 1999.PubMedGoogle Scholar
  103. 103.
    Rajadhyaksha, M., M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Invest. Dermatol. 104:946–952, 1995.PubMedGoogle Scholar
  104. 104.
    Rouse, A. R., and A. F. Gmitro. Multispectral imaging with a confocal microendoscope. Opt. Lett. 25:1708–1710, 2000.PubMedGoogle Scholar
  105. 105.
    Rouse, A. R., A. Kano, and A. F. Gmitro. Development of a fiber-optic confocal microendoscope for clinical endoscopy. In: Proceedings of SPIE—Optical Biopsy IV, San Jose, CA, USA, SPIE, pp. 244–253, 2002.Google Scholar
  106. 106.
    Rouse, A. R., A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro. Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43:5763–5771, 2004.PubMedGoogle Scholar
  107. 107.
    Sabharwal, Y. S., A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro. Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38:7133–7144, 1999.PubMedGoogle Scholar
  108. 108.
    Sakashita, M., H. Inoue, H. Kashida, J. Tanaka, J. Y. Cho, H. Satodate, E. Hidaka, T. Yoshida, N. Fukami, Y. Tamegai, A. Shiokawa, and S. Kudo. Virtual histology of colorectal lesions using laser-scanning confocal microscopy. Endoscopy 35:1033–1038, 2003.PubMedGoogle Scholar
  109. 109.
    Shin, H. J., M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum. Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens. Opt. Express 15:9113–9122, 2007.PubMedGoogle Scholar
  110. 110.
    Sokolov, K., K. B. Sung, T. Collier, A. Clark, D. Arifler, A. Lacy, M. Descour, and R. Richards-Kortum. Endoscopic microscopy. Dis. Markers 18:269–291, 2002.PubMedGoogle Scholar
  111. 111.
    Sonn, G. A., S. N. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol. 182:1299–1305, 2009.PubMedGoogle Scholar
  112. 112.
    Sung, K. B., C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum. Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved. J. Microsc. Oxford 207:137–145, 2002.Google Scholar
  113. 113.
    Sung, K. B., C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues. IEEE Trans. Biomed. Eng. 49:1168–1172, 2002.PubMedGoogle Scholar
  114. 114.
    Sung, K. B., R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour. Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo. Opt. Express 11:3171–3181, 2003.PubMedGoogle Scholar
  115. 115.
    Tan, J., M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. McLaren. Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG 116:1663–1670, 2009.PubMedGoogle Scholar
  116. 116.
    Tanbakuchi, A. A., A. R. Rouse, J. A. Udovich, and A. F. Gmitro. Surgical imaging catheter for confocal microendoscopy with advanced contrast delivery and focus systems. In: Proceedings of SPIE—Endoscopic Microscopy, San Jose, CA, USA, SPIE, p. 608202, 2006.Google Scholar
  117. 117.
    Tanbakuchi, A. A., A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro. Clinical confocal microlaparoscope for real-time in vivo optical biopsies. J. Biomed. Opt. 14:044030, 2009.PubMedGoogle Scholar
  118. 118.
    Tanbakuchi, A. A., J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro. In vivo imaging of ovarian tissue using a novel confocal microlaparoscope. Am. J. Obstet. Gynecol. 202:90.e1–90.e9, 2010.Google Scholar
  119. 119.
    Tearney, G. J., M. Shishkov, and B. E. Bouma. Spectrally encoded miniature endoscopy. Opt. Lett. 27:412–414, 2002.PubMedGoogle Scholar
  120. 120.
    Tearney, G. J., R. H. Webb, and B. E. Bouma. Spectrally encoded confocal microscopy. Opt. Lett. 23:1152–1154, 1998.PubMedGoogle Scholar
  121. 121.
    Thiberville, L., S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cave, and G. B. Heckly. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med. 175:22–37, 2007.PubMedGoogle Scholar
  122. 122.
    Thiberville, L., M. Salaun, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly. Confocal fluorescence endomicroscopy of the human airways. Proc. Am. Thorac. Soc. 6:444–449, 2009.PubMedGoogle Scholar
  123. 123.
    Thompson, A. J., C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French. Adaptive phase compensation for ultracompact laser scanning endomicroscopy. Opt. Lett. 36:1707–1709, 2011.PubMedGoogle Scholar
  124. 124.
    U.S. Food and Drug Administration. Drugs@FDA: FDA Approved Drug Products. 2011.
  125. 125.
    Viellerobe, B., A. Osdoit, C. Cave, F. Lacombe, S. Loiseau, and B. Abrat. Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy. In: Proceedings of SPIE—Endoscopic Microscopy, San Jose, CA, USA, pp. 60820C, 2006.Google Scholar
  126. 126.
    Wang, T. D., C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino. Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection. Opt. Lett. 28:1915–1917, 2003.PubMedGoogle Scholar
  127. 127.
    Wang, T. D., M. J. Mandella, C. H. Contag, and G. S. Kino. Dual-axis confocal microscope for high-resolution in vivo imaging. Opt. Lett. 28:414–416, 2003.PubMedGoogle Scholar
  128. 128.
    Watanabe, O., T. Ando, O. Maeda, M. Hasegawa, D. Ishikawa, K. Ishiguro, N. Ohmiya, Y. Niwa, and H. Goto. Confocal endomicroscopy in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 23(Suppl 2):S286–S290, 2008.PubMedGoogle Scholar
  129. 129.
    White, W. M., M. Rajadhyaksha, S. Gonzalez, R. L. Fabian, and R. R. Anderson. Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy. Laryngoscope 109:1709–1717, 1999.PubMedGoogle Scholar
  130. 130.
    Wilson, T. Confocal Microscopy. London: Academic Press, 1990.Google Scholar
  131. 131.
    Wilson, T. Image-formation in 2-mode fiber-based confocal microscopes. J. Opt. Soc. Am. A 10:1535–1543, 1993.Google Scholar
  132. 132.
    Wilson, B. C. Detection and treatment of dysplasia in Barrett’s esophagus: a pivotal challenge in translating biophotonics from bench to bedside. J. Biomed. Opt. 12:051401, 2007.PubMedGoogle Scholar
  133. 133.
    Wu, K., J. J. Liu, W. Adams, G. A. Sonn, K. E. Mach, Y. Pan, A. H. Beck, K. C. Jensen, and J. C. Liao. Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 78:225–231, 2011.PubMedGoogle Scholar
  134. 134.
    Xie, X. J., C. Q. Li, X. L. Zuo, T. Yu, X. M. Gu, Z. Li, R. Ji, Q. Wang, and Y. Q. Li. Differentiation of colonic polyps by confocal laser endomicroscopy. Endoscopy 43:87–93, 2011.PubMedGoogle Scholar
  135. 135.
    Yelin, D., C. Boudoux, B. E. Bounia, and G. J. Tearney. Large area confocal microscopy. Opt. Lett. 32:1102–1104, 2007.PubMedGoogle Scholar
  136. 136.
    Zambelli, A., V. Villanacci, E. Buscarini, G. Lupinacci, F. De Grazia, G. Brambilla, F. Menozzi, L. La Mantia, and G. Bassotti. Confocal laser endomicroscopy in celiac disease: description of findings in two cases. Endoscopy 39:1018–1020, 2007.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Joey M. Jabbour
    • 1
  • Meagan A. Saldua
    • 1
  • Joel N. Bixler
    • 1
  • Kristen C. Maitland
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations