Annals of Biomedical Engineering

, Volume 40, Issue 2, pp 474–485 | Cite as

Measuring Tissue Properties and Monitoring Therapeutic Responses Using Acousto-Optic Imaging

  • Todd W. MurrayEmail author
  • Puxiang Lai
  • Ronald A. Roy


Acousto-optic imaging is a hybrid imaging technique that exploits the interaction between light and sound to image optical contrast at depth in optically turbid media with the high spatial resolution of ultrasound. Quantitative measurement of optical properties using this technique is confounded by multiple parameters that influence the detected acousto-optic signal. In this article, we describe the origin of the acousto-optic response and review techniques that have been proposed to relate this response to the optical properties of turbid media. We present an overview of two acousto-optic sensing approaches. In the first, we demonstrate that the local transport mean free path within turbid media can be obtained by varying the pressure of the ultrasound field and processing the resulting acousto-optic signals. In the second, we demonstrate that the acousto-optic response elicited by a high-intensity ultrasound field during thermal therapy can be used to monitor the onset of lesion formation, ascertain lesion volume, and provide real-time control of exposure duration.


Ultrasound Optical imaging Ultrasound-modulated optical tomography Acousto-optic imaging Photorefractive crystal Turbid media Tissue optics High-intensity-focused ultrasound Thermal therapy 



The authors would like to acknowledge the generous financial support of the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems under National Science Foundation Award No. EEC-9986821.


  1. 1.
    Ben-David, M., R. Cantor, N. Balbul, M. Yehuda, and I. Gannot. Measuring tissue heat penetration by scattered light measurements. Lasers Surg. Med. 40:494–499, 2008.PubMedCrossRefGoogle Scholar
  2. 2.
    Blonigen, F. J., A. Nieva, C. A. DiMarzio, S. Manneville, L. Sui, G. Maguluri, T. W. Murray, and R. A. Roy. Computations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractive-based detection. Appl. Opt. 44:3735–3746, 2005.PubMedCrossRefGoogle Scholar
  3. 3.
    Born, M., and E. Wolf. Principles of Optics. Cambridge: Cambridge University Press, 1999.Google Scholar
  4. 4.
    Bossy, E., L. Sui, T. W. Murray, and R. A. Roy. Fusion of conventional ultrasound imaging and acousto-optical sensing by use of a standard pulsed ultrasound scanner. Opt. Lett. 30:744–746, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Bratchenia, A., R. Molenaar, and R. P. H. Kooyman. Feasibility of quantitative determination of local optical absorbances in tissue-mimicking phantoms using acousto-optic sensing. Appl. Phys. Lett. 92:113901, 2008.CrossRefGoogle Scholar
  6. 6.
    Bratchenia, A., R. Molenaar, T. G. van Leeuwen, and R. P. H. Kooyman. Millimeter-resolution acousto-optic quantitative imaging in a tissue model system. J. Biomed. Opt. 14:034031, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    Coussios, C.-C. H. Farny, G. T. Haar, and R. A. Roy. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int. J. Hyperth. 23:105–120, 2007.CrossRefGoogle Scholar
  8. 8.
    Dewhurst, R. J., and Q. Shan. Optical remote measurement of ultrasound. Meas. Sci. Technol. 10:R139–R168, 1999.CrossRefGoogle Scholar
  9. 9.
    Dolfi, D., and F. Micheron. Imaging process and system for transillumination with photon frequency marking. International Patent WO 98/00278, 1989.Google Scholar
  10. 10.
    Elson, D. S., R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang. Ultrasound-mediated optical tomography: a review of current methods. Interface Focus 1:632–648, 2011.CrossRefGoogle Scholar
  11. 11.
    Fantini, S., and M. A. Franceschini. Frequency domain techniques for tissue spectroscopy and imaging. In: Handbook of Optical Biomedical Diagnostics, edited by V. V. Tuchin. Bellingham, WA: SPIE Press, 2002, pp. 405–453.Google Scholar
  12. 12.
    Farahi, S., G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz. Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal. Opt. Lett. 35:1798–1800, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Gelet, A., J. Y. Chapelon, R. Bouvier, O. Rouviere, Y. Lasne, D. Lyonnet, and J. M. Dubernard. Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J. Endourol. 14:519–528, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Gibson, A. P., J. C. Hebden, and S. R. Arridge. Recent advances in diffuse optical imaging. Phys. Med. Biol. 50:R1–R43, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Gross, M., P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn. Heterodyne detection of multiply scattered monochromatic light with a multipixel detector. Opt. Lett. 30:1357–1359, 2005.PubMedCrossRefGoogle Scholar
  16. 16.
    Hill, C. R., and G. R. ter Haar. High intensity focused ultrasound-potential for cancer treatment. Br. J. Radiol. 68:1296–1303, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Hynynen, K., W. R. Fruend, H. E. Cline, A. H. Chung, R. D. Watkins, J. P. Vetro, and F. A. Jolesz. A clinical, noninvasive, MR imaging-monitored ultrasound surgery method. Radiographics 16:185–195, 1996.PubMedGoogle Scholar
  18. 18.
    Kempe, M., M. Larionov, D. Zaslavsky, and A. Z. Genack. Acousto-optic tomography with multiply scattered light. J. Opt. Soc. Am. A 14:1151–1158, 1997.CrossRefGoogle Scholar
  19. 19.
    Kennedy, J. E. High intensity focused ultrasound in the treatment of solid tumors. Nat. Rev. Cancer 5:321–327, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Kennedy, J. E., F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Philips, M. R. Middleton, and D. Cranston. High intensity focused ultrasound for the treatment of liver tumors. Ultrasonics 42:931–935, 2004.PubMedCrossRefGoogle Scholar
  21. 21.
    Khokhlova, T. D., I. M. Pelivanov, O. A. Sapozhniko, V. S. Solomatin, and A. A. Karabutov. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments. Quantum Electron. 36:1097–1102, 2006.CrossRefGoogle Scholar
  22. 22.
    Kim, C., and L. H. V. Wang. Multi-optical-wavelength ultrasound modulated optical tomography: a phantom study. Opt. Lett. 32:2285–2287, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Kothapalli, S. R., S. Sakadzic, C. Kim, and L. V. Wang. Imaging optically scattering objects with ultrasound-modulated optical tomography. Opt. Lett. 32:2351–2353, 2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Lai, P. Photorefractive Crystal-Based Acousto-Optic Imaging in the Near-Infrared and Its Applications. Ph.D. Dissertation, Boston University, Boston, MA, 2011.Google Scholar
  25. 25.
    Lai, P., J. R. Mclaughlan, A. B. Draudt, R. O. Cleveland, R. A. Roy, and T. W. Murray. Monitoring and guidance of high intensity focused ultrasound exposures in real time using acousto-optic imaging: feasibility and demonstration ex vivo. Proc. SPIE 7564:75642B, 2010.Google Scholar
  26. 26.
    Lai, P., J. R. McLaughlan, A. B. Draudt, T. W. Murray, R. O. Cleveland, and R. A. Roy. Real-time monitoring of high-intensity focused ultrasound lesion formation using acousto-optic sensing. Ultrasound Med. Biol. 37:239–252, 2011.PubMedCrossRefGoogle Scholar
  27. 27.
    Lai, P., R. A. Roy, and T. W. Murray. Quantitative characterization of turbid media using pressure contrast acousto-optic imaging. Opt. Lett. 34:2850–2852, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Lai, P., R. A. Roy, and T. W. Murray. Sensing the optical properties of diffusive media by acousto-optic pressure contrast imaging. Proc. SPIE 7177:71771G, 2009.CrossRefGoogle Scholar
  29. 29.
    Leung, T. S., and S. Powell. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit. J. Biomed. Opt. 15:055007, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Leutz, W., and G. Maret. Ultrasonic modulation of multiply scattered light. Physica B 204:14–19, 1995.CrossRefGoogle Scholar
  31. 31.
    Leveqe-Fort, S., A. C. Boccara, M. Lebec, and H. Saint-Jalmes. Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing. Opt. Lett. 24:181–183, 1999.CrossRefGoogle Scholar
  32. 32.
    Li, Y., P. Hemmer, C. Kim, H. Zhang, and L. V. Wang. Detection of ultrasound-modulated diffuse photons using spectral-hole burning. Opt. Express 16:14862–14864, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Maleke, C., and E. E. Konofagou. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues. Phys. Med. Biol. 53:1773–1793, 2008.PubMedCrossRefGoogle Scholar
  34. 34.
    Marks, F. A., H. W. Tomlinson, and G. W. Brooksby. A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination. Proc. SPIE 1888:500–510, 1993.CrossRefGoogle Scholar
  35. 35.
    Murray, T. W., and R. A. Roy. Illuminating sound: imaging tissue optical properties with ultrasound. Acoustics Today 3:17–24, 2007.CrossRefGoogle Scholar
  36. 36.
    Murray, T. W., L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. J. Blonigen, and C. A. DiMarzio. Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect. Opt. Lett. 29:2509–2511, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Nilsson, A. M. K., C. Sturesson, D. L. Liu, and S. Andersson-Engels. Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy. Appl. Opt. 37:1256–1267, 1998.PubMedCrossRefGoogle Scholar
  38. 38.
    Ramaz, F., B. C. Forget, M. Atlan, and A. C. Boccara. Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues. Opt. Express 12:5469–5474, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Rousseau, G., A. Blouin, and J. P. Monchalin. Ultrasound-modulated optical imaging using a powerful long pulse laser. Opt. Express 16:12577–12590, 2008.PubMedCrossRefGoogle Scholar
  40. 40.
    Rousseau, G., A. Blouin, and J. P. Monchalin. Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal interferometer. Opt. Lett. 34:3445–3447, 2009.PubMedCrossRefGoogle Scholar
  41. 41.
    Sakadzic, S., and L. V. Wang. High resolution ultrasound-modulated optical tomography in biological tissues. Opt. Lett. 29:2770–2772, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Sakadzic, S., and L. V. Wang. Modulation of multiply scattered coherent light by ultrasound pulses: an analytical model. Phys. Rev. E 72:033620, 2005.CrossRefGoogle Scholar
  43. 43.
    ter Haar, G. R., and C.-C. Coussios. High intensity focused ultrasound: physical principles and devices. Int. J. Hyperth. 23:89–104, 2007.CrossRefGoogle Scholar
  44. 44.
    Wang, L. V. Mechanisms of ultrasound modulation of multiply scattered coherent light: an analytic model. Phys. Rev. Lett. 87:043903, 2001.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang, L. V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model. Opt. Lett. 26:1191–1193, 2001.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang, L. V. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. Dis. Markers 19:123–138, 2003.PubMedGoogle Scholar
  47. 47.
    Wang, L. V., S. L. Jacques, and X. Zhao. Continuous-wave ultrasonic modulation scattered light to image objects in turbid media. Opt. Lett. 20:629–631, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang, L. V., and H. Wu. Biomedical Optics Principles and Imaging, Hoboken. New Jersey: Wiley, 2007.Google Scholar
  49. 49.
    Wu, F., Z. Wang, W. Chen, J. Zou, J. Bai, H. Zhu, K. Li, F. Xie, C. Jin, H. Su, and G. Gao. Extracorporeal focused ultrasound surgery for the treatment of human solid carcinomas: early Chinese clinical experience. Ultrasound Med. Biol. 30:245–260, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Xu, M., and L. V. Wang. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77:041101, 2006.CrossRefGoogle Scholar
  51. 51.
    Xu, X., H. Zhang, P. Hemmer, D. K. Qing, C. Kim, and L. V. Wang. Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography. Opt. Lett. 32:656–658, 2007.PubMedCrossRefGoogle Scholar
  52. 52.
    Yao, G., and L. V. Wang. Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue. Appl. Opt. 39:659–664, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA
  3. 3.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations