Annals of Biomedical Engineering

, Volume 40, Issue 1, pp 37–46 | Cite as

High School and Collegiate Football Athlete Concussions: A Biomechanical Review

  • Steven P. Broglio
  • Tyler Surma
  • James A. Ashton-Miller


Researchers are striving to understand the biomechanics of concussive injury that occur in the context of sport by using a number of methodologies. Animal models, video reconstruction, and helmet-based accelerometers have all been used, but have their limitations. The Head Impact Telemetry (HIT) System permits the real-time in vivo tracking of all impacts that occur on the football field and has been used in both the high school and collegiate setting. This review provides a theoretical discussion of concussion mechanics and examines the current literature on the effects of the number of impacts, impact magnitude, impact distribution, and concussion threshold in high school and collegiate football athletes recorded by the HIT System.


Football Sport injury Traumatic brain injury Impact Acceleration 


  1. 1.
    Bauer, J. A., T. S. Thomas, J. H. Cauraugh, T. W. Kaminski, and C. J. Hass. Impact forces and neck muscle activity in heading by collegiate female soccer players. J. Sports Sci. 19:171–179, 2001.PubMedCrossRefGoogle Scholar
  2. 2.
    Bishop, P. J., R. W. Norman, and J. W. Kozey. An evaluation of football helmets under impact conditions. Am. J. Sport Med. 12:233–236, 1984.CrossRefGoogle Scholar
  3. 3.
    Broglio, S. P., J. T. Eckner, D. Martini, J. J. Sosnoff, J. S. Kutcher, and C. Randolph. Cumulative head impact burden in high school football. J. Neurotrauma, in press, PMID: 21787201.Google Scholar
  4. 4.
    Broglio, S. P., B. Schnebel, J. J. Sosnoff, et al. Biomechanical properties of concussions in high school football. Med. Sci. Sports Exerc. 42:2064–2071, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Broglio, S. P., J. J. Sosnoff, S. Shin, X. He, C. Alcaraz, and J. P. Zimmerman. Head impacts during high school football: A biomechanical assessment. J. Athl. Train. 44:342–349, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Brolinson, P. G., S. Manoogian, D. McNeely, M. Goforth, R. Greenwald, and S. Duma. Analysis of linear head accelerations from collegiate football impacts. Curr. Sports Med. Rep. 5:23–28, 2006.PubMedGoogle Scholar
  7. 7.
    Cantu, R. C. Head injuries in sports. Br. J. Sports Med. 30:289–296, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Crisco, J. J., J. J. Chu, and R. M. Greenwald. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J. Biomech. Eng. 126:849–854, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Crisco, J. J., R. Fiore, J. G. Beckwith, et al. Frequency and location of head impact exposures in individual collegiate football players. J. Athl. Train. 45:549–559, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Duma, S. M., S. J. Manoogian, W. R. Bussone, et al. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15:3–8, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Eckner, J. T., M. N. Sabin, J. S. Kutcher, and S. P. Broglio. No evidence for a cumulative impacts effect on concussion injury threshold. J. Neurotrauma, in press, PMID: 21815783.Google Scholar
  12. 12.
    Funk, J. R., S. M. Duma, S. J. Manoogian, and S. Rowson. Biomechanical risk estimates for mild traumatic brain injury. Annu. Proc. Assoc. Adv. Automot. Med. 51:343–361, 2007.PubMedGoogle Scholar
  13. 13.
    Gessel, L. M., S. K. Fields, C. L. Collins, R. W. Dick, and R. D. Comstock. Concussions among United States high school and collegiate athletes. J. Athl. Train. 42:495–503, 2007.PubMedGoogle Scholar
  14. 14.
    Giedd, J. N., J. Blumenthal, N. O. Jefferies, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2:861–863, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenwald, R. M., J. T. Gwin, J. J. Chu, and J. J. Crisco. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62:789–798, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Guskiewicz, K. M., S. L. Bruce, R. C. Cantu, et al. National Athletic Trainers’ Association position statement: management of sport-related concussion. J. Athl. Train. 29:280–297, 2004.Google Scholar
  17. 17.
    Guskiewicz, K. M., M. McCrea, S. W. Marshall, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA concussion study. JAMA 290:2549–2555, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Guskiewicz, K. M., J. P. Mihalik, V. Shankar, et al. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery 61:1244–1252, 2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Guskiewicz, K. M., N. L. Weaver, D. A. Padua, and W. E. Garrett. Epidemiology of concussion in collegiate and high school football players. Am. J. Sports Med. 28:643–650, 2000.PubMedGoogle Scholar
  20. 20.
    Hollister, N.R., W.P. Jolley, and R.G. Horne. Biophysics of concussion. WADC Tech. Rep. No. ASTIA 203385, 1958Google Scholar
  21. 21.
    Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21:375–378, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis, L. M., R. Naunheim, J. Standeven, C. Lauryssen, C. Richter, and B. Jeffords. Do football helmets reduce acceleration of impact in blunt head injuries? Acad. Emerg. Med. 8:604–609, 2001.PubMedCrossRefGoogle Scholar
  23. 23.
    Lovell, M. R., G. L. Iverson, M. W. Collins, D. B. McKeag, and J. C. Maroon. Does loss of consciousness predict neuropsychological decrements after concussion? Clin. J. Sport Med. 9:193–198, 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Manoogian, S., D. McNeely, S. Duma, G. Brolinson, and R. Greenwald. Head acceleration is less than 10 percent of helmet acceleration in football impacts. Biomed. Sci. Instrum. 42:383–388, 2006.PubMedGoogle Scholar
  25. 25.
    McCrory, P., W. Meeuwisse, K. Johnston, et al. Consensus statement on concussion in sport 3rd international conference on concussion in sport held in Zurich, November 2008. Br. J. Sports Med. 43:76–90, 2009.CrossRefGoogle Scholar
  26. 26.
    McIntosh, A. S., P. McCrory, and J. Comerford. The dynamics of concussive head impacts in rugby and Australian rules football. Med. Sci. Sports Exerc. 32:1980–1984, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Meyer, J. S., A. Kondo, F. Nomura, K. Sakamoto, and T. Teraura. Cerebral hemodynamics and metabolism following experimental head injury. J. Neurosurg. 32:304–319, 1970.PubMedCrossRefGoogle Scholar
  28. 28.
    Mihalik, J. P., D. R. Bell, S. W. Marshall, and K. M. Guskiewicz. Measurement of head impacts in collegiate football players: an investigation of positional and event-type differences. Neurosurgery 61:1229–1235, 2007.PubMedCrossRefGoogle Scholar
  29. 29.
    Naunheim, R. S., J. Standeven, C. Richter, and L. M. Lewis. Comparison of impact data in hockey, football, and soccer. J. Trauma 48:938–941, 2000.PubMedCrossRefGoogle Scholar
  30. 30.
    Nilsson, B., and C. H. Nordstrom. Experimental head injury in the rat: part 3: cerebral blood flow and oxygen consumption after concussive impact acceleration. J. Neurosurg. 47:262–273, 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Nilsson, B., and C. H. Nordstrom. Rate of cerebral energy consumption in concussive head injury in the rat. J. Neurosurg. 47:274–281, 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Nilsson, B., and U. Ponten. Experimental head injury in the rat: part 2: regional brain energy metabolism in concussive trauma. J. Neurosurg. 47:252–261, 1977.PubMedCrossRefGoogle Scholar
  33. 33.
    Nilsson, B., U. Ponten, and G. Voigt. Experimental head injury in rats: part 1: mechanics, pathophysiology, and morphology in an impact acceleration trauma model. J. Neurosurg. 47:241–251, 1977.PubMedCrossRefGoogle Scholar
  34. 34.
    Ommaya, A. K., and T. A. Gennarelli. Cerebral concussion and traumatic unconsciousness: correlation of experimental and clinical observations on blunt head injuries. Brain 97:633–654, 1974.PubMedCrossRefGoogle Scholar
  35. 35.
    Padgaonkar, A. J., K. W. Krieger, and A. I. King. Measurement of angular acceleration of a rigid body using linear accelerometers. J. Appl. Mech. 42:552–556, 1975.CrossRefGoogle Scholar
  36. 36.
    Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 35:799–814, 2003.Google Scholar
  37. 37.
    Powell, J. W., and K. D. Barber-Foss. Traumatic brain injury in high school athletes. JAMA 282:958–963, 1999.PubMedCrossRefGoogle Scholar
  38. 38.
    Pundez, R. H., and C. H. Shelden. The lucite calvarium—a method for direct observation of the brain. J. Neurosurg. 3:487–505, 1946.CrossRefGoogle Scholar
  39. 39.
    Reid, S. E., J. A. Tarkington, H. M. Epstein, and T. J. O’Dea. Brain tolerance to impact in football. Surg. Gynecol. Obstet. 133:929–936, 1971.PubMedGoogle Scholar
  40. 40.
    Rowson, S., J. G. Beckwith, J. J. Chu, D. S. Leonard, R. M. Greenwald, and S. M. Duma. A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27:8–14, 2011.PubMedGoogle Scholar
  41. 41.
    Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131:061016-1–061016-7, 2009.CrossRefGoogle Scholar
  42. 42.
    Rowson, S., and S. M. Duma. Development of the STAR evaluation system for football helmets: integrating player head impact exposure and risk of concussion. Ann. Biomed. End. 39:2130–2140, 2011.CrossRefGoogle Scholar
  43. 43.
    Schnebel, B., J. T. Gwin, S. Anderson, and R. Gatlin. In vivo study of head impacts in football: a comparison of National Collegiate Athletic Association Division I versus high school impacts. Neurosurgery 60:490–495, 2007.PubMedCrossRefGoogle Scholar
  44. 44.
    Thelen, D. G., A. B. Schultz, N. B. Alexander, and J. A. Ashton-Miller. Effects of age on rapid ankle torque development. J. Gerontol. A Biol. Sci. Med. Sci. 51:226–232, 1996.CrossRefGoogle Scholar
  45. 45.
    Thurman, D. J., C. M. Branche, and J. E. Sniezek. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J. Head Trauma Rehabil. 13:1–8, 1998.PubMedGoogle Scholar
  46. 46.
    Viano, D. C., I. R. Casson, and E. J. Pellman. Concussion in professional football: biomechanics of the struck player—part 14. Neurosurgery 61:313–328, 2007.PubMedCrossRefGoogle Scholar
  47. 47.
    Viano, D. C., and E. J. Pellman. Concussion in professional football: biomechanics of the striking player—part 8. Neurosurgery 56:266–280, 2005.PubMedCrossRefGoogle Scholar
  48. 48.
    Weiss, P. L., I. W. Hunter, and R. E. Kerney. Human ankle joint stiffness over the full range of muscle activation levels. J. Biomech. 21:539–544, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Steven P. Broglio
    • 1
  • Tyler Surma
    • 2
  • James A. Ashton-Miller
    • 3
  1. 1.Michigan NeuroSport, Neurotrauma Research Laboratory, School of KinesiologyUniversity of MichiganAnn ArborUSA
  2. 2.University of Illinois-ChicagoChicagoUSA
  3. 3.Biomechanics Research LaboratoryUniversity of MichiganAnn ArborUSA

Personalised recommendations