Annals of Biomedical Engineering

, Volume 40, Issue 1, pp 1–13 | Cite as

Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion

  • Steven Rowson
  • Stefan M. Duma
  • Jonathan G. Beckwith
  • Jeffrey J. Chu
  • Richard M. Greenwald
  • Joseph J. Crisco
  • P. Gunnar Brolinson
  • Ann-Christine Duhaime
  • Thomas W. McAllister
  • Arthur C. Maerlender
Article

Abstract

Recent research has suggested a possible link between sports-related concussions and neurodegenerative processes, highlighting the importance of developing methods to accurately quantify head impact tolerance. The use of kinematic parameters of the head to predict brain injury has been suggested because they are indicative of the inertial response of the brain. The objective of this study is to characterize the rotational kinematics of the head associated with concussive impacts using a large head acceleration dataset collected from human subjects. The helmets of 335 football players were instrumented with accelerometer arrays that measured head acceleration following head impacts sustained during play, resulting in data for 300,977 sub-concussive and 57 concussive head impacts. The average sub-concussive impact had a rotational acceleration of 1230 rad/s2 and a rotational velocity of 5.5 rad/s, while the average concussive impact had a rotational acceleration of 5022 rad/s2 and a rotational velocity of 22.3 rad/s. An injury risk curve was developed and a nominal injury value of 6383 rad/s2 associated with 28.3 rad/s represents 50% risk of concussion. These data provide an increased understanding of the biomechanics associated with concussion and they provide critical insight into injury mechanisms, human tolerance to mechanical stimuli, and injury prevention techniques.

Keywords

Mild traumatic brain injury Head Helmet Angular Acceleration Sports HITS 

References

  1. 1.
    Booher, M. A., J. Wisniewski, B. W. Smith, and A. Sigurdsson. Comparison of reporting systems to determine concussion incidence in NCAA division I collegiate football. Clin. J. Sport Med. 13:93–95, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Broglio, S. P., M. S. Ferrara, S. G. Piland, R. B. Anderson, and A. Collie. Concussion history is not a predictor of computerised neurocognitive performance. Br. J. Sports Med. 40:802–805, 2006; discussion 5.PubMedCrossRefGoogle Scholar
  3. 3.
    Broglio, S. P., B. Schnebel, J. J. Sosnoff, S. Shin, X. Fend, X. He, and J. Zimmerman. Biomechanical properties of concussions in high school football. Med. Sci. Sports Exerc. 42:2064–2071, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Broglio, S. P., J. J. Sosnoff, S. Shin, X. He, C. Alcaraz, and J. Zimmerman. Head impacts during high school football: a biomechanical assessment. J. Athl. Train. 44:342–349, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Chu, J. J., J. G. Beckwith, J. J. Crisco, and R. Greenwald. A novel algorithm to measure linear and rotational head acceleration using single-axis accelerometers. J. Biomech. 39(Suppl. 1):S534, 2006.CrossRefGoogle Scholar
  6. 6.
    Crisco, J. J., J. J. Chu, and R. M. Greenwald. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J. Biomech. Eng. 126:849–854, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Crisco, J. J., R. Fiore, J. G. Beckwith, J. J. Chu, P. G. Brolinson, S. Duma, T. W. McAllister, A. C. Duhaime, and R. M. Greenwald. Frequency and location of head impact exposures in individual collegiate football players. J. Athl. Train. 45:549–559, 2010.PubMedCrossRefGoogle Scholar
  8. 8.
    Davidsson, J., M. Angeria, and M. G. Risling. Injury threshold for sagittal plane rotational induced diffuse axonal injuries. In: Proceedings of the International Research Conference on the Biomechanics of Impact (IRCOBI), 2009.Google Scholar
  9. 9.
    Duma, S. M., S. J. Manoogian, W. R. Bussone, P. G. Brolinson, M. W. Goforth, J. J. Donnenwerth, R. M. Greenwald, J. J. Chu, and J. J. Crisco. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15:3–8, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Duma, S. M., and S. Rowson. Past, present, and future of head injury research. Exerc. Sport Sci. Rev. 39:2–3, 2011.PubMedCrossRefGoogle Scholar
  11. 11.
    Gadd, C. W. Use of a weighted-impulse criterion for estimating injury hazard. In: Proceedings of the 10th Stapp Car Crash Conference. SAE 660793, 1966.Google Scholar
  12. 12.
    Gavett, B. E., R. A. Stern, and A. C. McKee. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med. 30:179–188, 2011; xi.PubMedCrossRefGoogle Scholar
  13. 13.
    Gennarelli, T. A. Head injury in man and experimental animals: clinical aspects. Acta Neurochir. Suppl. (Wien) 32:1–13, 1983.Google Scholar
  14. 14.
    Gennarelli, T. A., L. E. Thibault, J. H. Adams, D. I. Graham, C. J. Thompson, and R. P. Marcincin. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12:564–574, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenwald, R. M., J. T. Gwin, J. J. Chu, and J. J. Crisco. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62:789–798, 2008; discussion 98.PubMedCrossRefGoogle Scholar
  16. 16.
    Gurdijan, E. S., V. L. Roberts, and L. M. Thomas. Tolerance curves of acceleration and intracranial pressure and protective index in experimental head injury. J. Trauma 6:600–604, 1966.CrossRefGoogle Scholar
  17. 17.
    Guskiewicz, K. M., J. P. Mihalik, V. Shankar, S. W. Marshall, D. H. Crowell, S. M. Oliaro, M. F. Ciocca, and D. N. Hooker. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery 61:1244–1253, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Gwin, J. T., J. J. Chu, S. G. Diamond, P. D. Halstead, J. J. Crisco, and R. M. Greenwald. An investigation of the NOCSAE linear impactor test method based on in vivo measures of head impact acceleration in American football. J. Biomech. Eng. 132:011006, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, 2001.PubMedGoogle Scholar
  20. 20.
    Hardy, W. N., T. B. Khalil, and A. I. King. Literature review of head injury biomechanics. Int. J. Impact Eng. 15:561–586, 1994.CrossRefGoogle Scholar
  21. 21.
    Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2007.PubMedGoogle Scholar
  22. 22.
    Hootman, J. M., R. Dick, and J. Agel. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J. Athl. Train. 42:311–319, 2007.PubMedGoogle Scholar
  23. 23.
    King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration? In: Proceedings of the International Research Conference on the Biomechanics of Impact (IRCOBI), 2003.Google Scholar
  24. 24.
    Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.PubMedGoogle Scholar
  25. 25.
    Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: A brief overview. J Head Trauma Rehabil. 21:375–378, 2006.PubMedCrossRefGoogle Scholar
  26. 26.
    Manoogian, S., D. McNeely, S. Duma, G. Brolinson, and R. Greenwald. Head acceleration is less than 10 percent of helmet acceleration in football impacts. Biomed. Sci. Instrum. 42:383–388, 2006.PubMedGoogle Scholar
  27. 27.
    Margulies, S. S., and L. E. Thibault. A proposed tolerance criterion for diffuse axonal injury in man. J. Biomech. 25:917–923, 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Margulies, S. S., L. E. Thibault, and T. A. Gennarelli. Physical model simulations of brain injury in the primate. J. Biomech. 23:823–836, 1990.PubMedCrossRefGoogle Scholar
  29. 29.
    McAllister, T. W. Genetic factors modulating outcome after neurotrauma. PM R. 2:S241–S252, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    McCrea, M., T. Hammeke, G. Olsen, P. Leo, and K. Guskiewicz. Unreported concussion in high school football players: implications for prevention. Clin. J. Sport Med. 14:13–17, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    McCrory, P., K. Johnston, W. Meeuwisse, M. Aubry, R. Cantu, J. Dvorak, T. Graf-Baumann, J. Kelly, M. Lovell, and P. Schamasch. Summary and agreement statement of the 2nd international conference on concussion in sport, prague 2004. Clin. J. Sport Med. 15:48–55, 2005.PubMedCrossRefGoogle Scholar
  32. 32.
    McElhaney, J. H., R. L. Stalnaker, V. L. Roberts, and R. G. Snyder. Door crashwortiness criteria. In: Proceedings of the 15th Stapp Car Crash Conference. SAE 710864, 1971.Google Scholar
  33. 33.
    Mihalik, J. P., D. R. Bell, S. W. Marshall, and K. M. Guskiewicz. Measurement of head impacts in collegiate football players: an investigation of positional and event-type differences. Neurosurgery 61:1229–1235, 2007; discussion 35.PubMedCrossRefGoogle Scholar
  34. 34.
    Newman, J. A., C. Barr, M. C. Beusenberg, E. Fournier, N. Shewchenko, E. Welbourne, and C. Withnall. A new biomechanical assessment of mild traumatic brain injury. Part 2: Results and conclusions. In: Proceedings of the International Research Conference on the Biomechanics of Impacts (IRCOBI), 2000, pp. 223–230.Google Scholar
  35. 35.
    Newman, J. A., M. C. Beusenberg, E. Fournier, N. Shewchenko, C. Withnall, A. I. King, K. Yang, L. Zhang, J. McElhaney, L. Thibault, and G. McGinnes. A new biomechanical assessment of mild traumatic brain injury. Part 1: Methodology. In: Proceedings of the International Research Conference on the Biomechanics of Impacts (IRCOBI), 1999, pp. 17–36.Google Scholar
  36. 36.
    Newman, J. A., N. Shewchenko, and E. Welbourne. A proposed new biomechanical head injury assessment function—the maximum power index. Stapp Car Crash J. 44:215–247, 2000.PubMedGoogle Scholar
  37. 37.
    Omalu, B. I., S. T. DeKosky, R. L. Hamilton, R. L. Minster, M. I. Kamboh, A. M. Shakir, and C. H. Wecht. Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery 59:1086–1092, 2006; discussion 92-3.PubMedGoogle Scholar
  38. 38.
    Omalu, B. I., S. T. DeKosky, R. L. Minster, M. I. Kamboh, R. L. Hamilton, and C. H. Wecht. Chronic traumatic encephalopathy in a national football league player. Neurosurgery 57:128–134, 2005; discussion 34.PubMedCrossRefGoogle Scholar
  39. 39.
    Ommaya, A. K. Biomechanics of head injuries: Experimental aspects. In: Biomechanics of Trauma, edited by A. Nahum and J. W. Melvin. Norwalk: Appleton-Century-Crofts, 1985.Google Scholar
  40. 40.
    Ommaya, A. K., and T. A. Gennarelli. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 97:633–654, 1974.PubMedCrossRefGoogle Scholar
  41. 41.
    Ommaya, A. K., P. Yarnell, A. E. Hirsch, and E. H. Harris. Scaling of experimental data on cerebral concussion in sub-human primates to concussion threshold for man. In: Proceedings of the 11th Stapp Car Crash Conference. SAE 670906, 1967.Google Scholar
  42. 42.
    Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–812, 2003; discussion 4.PubMedGoogle Scholar
  43. 43.
    Rowson, S., J. G. Beckwith, J. J. Chu, D. S. Leonard, R. M. Greenwald, and S. M. Duma. A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27:8–14, 2011.PubMedGoogle Scholar
  44. 44.
    Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. M. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131:061016, 2009.PubMedCrossRefGoogle Scholar
  45. 45.
    Rowson, S., and S. M. Duma. Development of the star evaluation system for football helmets: integrating player head impact exposure and risk of concussion. Ann. Biomed. Eng. 39:2130–2140, 2011.PubMedCrossRefGoogle Scholar
  46. 46.
    Rowson, S., C. McNally, and S. M. Duma. Can footwear affect achilles tendon loading? Clin. J. Sport Med. 20:344–349, 2010.PubMedCrossRefGoogle Scholar
  47. 47.
    Rowson, S., D. E. McNeely, P. G. Brolinson, and S. M. Duma. Biomechanical analysis of football neck collars. Clin. J. Sport Med. 18:316–321, 2008.PubMedCrossRefGoogle Scholar
  48. 48.
    Schnebel, B., J. T. Gwin, S. Anderson, and R. Gatlin. In vivo study of head impacts in football: a comparison of national collegiate athletic association division I versus high school impacts. Neurosurgery 60:490–495, 2007; discussion 5-6.PubMedCrossRefGoogle Scholar
  49. 49.
    Shain, K. S., M. L. Madigan, S. Rowson, J. Bisplinghoff, and S. M. Duma. Analysis of the ability of catcher’s masks to attenuate head accelerations on impact with a baseball. Clin. J. Sport Med. 20:422–427, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Stalnaker, R. L., and J. L. Fogle. Driving point impedance characteristics of the head. J. Biomech. 4:127–139, 1971.PubMedCrossRefGoogle Scholar
  51. 51.
    Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (simon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.PubMedGoogle Scholar
  52. 52.
    Unterharnscheidt, F. J. Translational versus rotational acceleration: animal experiments with measured inputs. In :Proceedings of the 15th Stapp Car Crash Conference. SAE 710880, 1971.Google Scholar
  53. 53.
    Versace, J. A review of the severity index. In: SAE Technical Paper Series. SAE 710881, 1971.Google Scholar
  54. 54.
    Ward, C., M. Chan, and A. Nahum. Intracranial pressure—a brain injury criterion. In: SAE Technical Paper Series. SAE 801304, 1980.Google Scholar
  55. 55.
    Williamson, I. J., and D. Goodman. Converging evidence for the under-reporting of concussions in youth ice hockey. Br. J. Sports Med. 40:128–132, 2006; (discussion 32).PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126:226–236, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Steven Rowson
    • 1
  • Stefan M. Duma
    • 1
  • Jonathan G. Beckwith
    • 2
  • Jeffrey J. Chu
    • 2
  • Richard M. Greenwald
    • 2
    • 3
  • Joseph J. Crisco
    • 4
  • P. Gunnar Brolinson
    • 5
  • Ann-Christine Duhaime
    • 6
  • Thomas W. McAllister
    • 7
  • Arthur C. Maerlender
    • 8
  1. 1.School of Biomedical Engineering & SciencesVirginia Tech-Wake Forest UniversityBlacksburgUSA
  2. 2.SimbexLebanonUSA
  3. 3.Thayer School of Engineering, Dartmouth CollegeHanoverUSA
  4. 4.Department of OrthopaedicsThe Warren Alpert Medical School of Brown University and Rhode Island HospitalProvidenceUSA
  5. 5.Edward Via Virginia College of Osteopathic MedicineBlacksburgUSA
  6. 6.Pediatric NeurosurgeryDartmouth Hitchcock Medical CenterHanoverUSA
  7. 7.Department of Psychiatry and NeurologyDartmouth Hitchcock Medical SchoolLebanonUSA
  8. 8.Department of PsychiatryDartmouth Hitchcock Medical CenterHanoverUSA

Personalised recommendations