Finite Element Analysis of Donning Procedure of a Prosthetic Transfemoral Socket

Article

Abstract

Lower limb amputation is a severe psychological and physical event in a patient. A prosthetic solution can be provided but should respond to a patient-specific need to accommodate for the geometrical and biomechanical specificities. A new approach to calculate the stress–strain state at the interaction between the socket and the stump of five transfemoral amputees is presented. In this study the socket donning procedure is modeled using an explicit finite element method based on the patient-specific geometry obtained from CT and laser scan data. Over stumps the mean maximum pressure is 4 kPa (SD 1.7) and the mean maximum shear stresses are 1.4 kPa (SD 0.6) and 0.6 kPa (SD 0.3) in longitudinal and circumferential directions, respectively. Locations of the maximum values are according to pressure zones at the sockets. The stress–strain states obtained in this study can be considered more reliable than others, since there are normal and tangential stresses associated to the socket donning procedure.

Keywords

Lower limb amputee Contact stress–strain state Patient-specific model 

Notes

Acknowledgments

We thank to the subjects who participated in the study.

References

  1. 1.
    Commuri, S., J. Day, C. P. Dionne, and W. Ertl. Assessment of pressures within the prosthetic socket of a person with osteomyoplastic amputation during varied walking tasks. J. Prosthet. Orthot. 22:127–137, 2010.CrossRefGoogle Scholar
  2. 2.
    Derler, S., U. Schrade, and L. C. Gerhardt. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263:1112–1116, 2007.CrossRefGoogle Scholar
  3. 3.
    Dou, P., X. Jia, S. Suo, R. Wang, and M. Zhang. Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road. Clin. Biomech. 21:1067–1073, 2006.CrossRefGoogle Scholar
  4. 4.
    Duchemin, L., V. Bousson, C. Raossanaly, C. Bergot, J. D. Laredo, W. Skalli, and D. Mitton. Prediction of mechanical properties of cortical bone by quantitative computed tomography. Med. Eng. Phys. 30:321–328, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    Faustini, M. C., R. Neptune, and R. Crawford. The quasi-static response of compliant prosthetic sockets for transtibial amputees using finite element methods. Med. Eng. Phys. 28:114–121, 2006.PubMedCrossRefGoogle Scholar
  6. 6.
    Goh, J. C. H., P. V. S. Lee, and S. Y. Chong. Stump/socket pressure profiles of the pressure cast prosthetic socket. Clin. Biomech. 18:237–243, 2003.CrossRefGoogle Scholar
  7. 7.
    Jia, X., M. Zhang, and W. Lee. Load transfer mechanics between trans-tibial prosthetic socket and residual limb—dynamic effects. J. Biomech. 37:1371–1377, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Jia, X., M. Zhang, X. Li, and W. Lee. A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees. Clin. Biomech. 20:630–635, 2005.CrossRefGoogle Scholar
  9. 9.
    Lee, W., and M. Zhang. Using computational simulation to aid in the prediction of socket fit: a preliminary study. Med. Eng. Phys. 29:923–929, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, W., M. Zhang, D. Boone, and B. Contoyannis. Finite element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket. J. Rehabil. Res. Dev. 41:775–786, 2004.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, W., M. Zhang, X. Jia, and J. Cheung. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med. Eng. Phys. 26:655–662, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, W., M. Zhang, and A. Mak. Regional differences in pain threshold and tolerance of the transtibial residual limb: including the effects of age and interface material. Arch. Phys. Med. Rehabil. 86:641–649, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin, Ch., C. Chang, C. Wu, K. Chung, and I. Liao. Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model. Med. Eng. Phys. 26:1–9, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Linder-Ganz, E., N. Shabshin, Y. Itzchak, and A. Gefen. Assessment of mechanical condition in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40:1443–1454, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Mak, A., M. Zhang, and D. Bone. State of the art research in lower limb prosthetic biomechanics socket interface: a review. J. Rehabil. Res. Dev. 38(2):161–174, 2001.PubMedGoogle Scholar
  16. 16.
    Portnoy, S., I. Siev-Ner, N. Shabshin, A. Kristal, Z. Yizhar, and A. Gefen. Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. J. Biomech. 42:2686–2693, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Portnoy, S., I. Siev-Ner, Z. Yizhar, A. Kristal, N. Shabshin, and A. Gefen. Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum. Ann. Biomed. Eng. 37:2583–2605, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Portnoy, S., G. Yarnitzky, Z. Yizhar, A. Kristal, U. Oppenheim, I. Siev-Ner, and A. Gefen. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting. Ann. Biomed. Eng. 35:120–135, 2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Portnoy, S., Z. Yizhar, N. Shabshin, Y. Itzchak, A. Kristal, Y. Dotan-Marom, I. Siev-Ner, and A. Gefen. Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee. J. Biomech. 41:1897–1909, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanders, J. E., S. G. Zachariah, A. K. Jacobsen, and J. R. Fergason. Changes in interface pressures and shear stress over time on trans-tibial amputee subjects ambulating with prosthetic limbs: comparison of diurnal and six-month differences. J. Biomech. 38:1566–1573, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Seelen, H. A. M., S. Anemaat, H. M. H. Janssen, and J. H. M. Deckers. Effects of prosthesis alignment on pressure distribution at the stump/socket interface in transtibial amputees during unsupported stance and gait. Clin. Rehabil. 17:787–796, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Silver-Thorn, M. B., J. W. Steege, and D. S. Childress. A review of prosthetic interface stress investigations. J. Rehabil. Res. Dev. 33:253–266, 1996.PubMedGoogle Scholar
  23. 23.
    Tanaka, M., Y. Akazawa, A. Nakagawa, and I. Kitayama. Identification of pressure distribution at the socket interface of an above-knee prosthesis. Adv. Eng. Softw. 28:379–384, 1997.CrossRefGoogle Scholar
  24. 24.
    Wolf, S. I., M. Alimusaj, L. Fradet, J. Siegel, and F. Braatz. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin. Biomech. 24:860–865, 2009.CrossRefGoogle Scholar
  25. 25.
    Zachariah, S. G., and J. E. Sanders. Interface mechanics in lower-limb external prosthetics: a review of finite element models. IEEE Trans. Rehabil. Eng. 4:288–302, 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Zachariah, S., and J. Sanders. Finite element estimates of interface stress in the transtibial prosthesis using gap elements are different from those using automated contact. J. Biomech. 33:895–899, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, M., M. Lord, A. Turner-Smith, and V. Roberts. Development of a non-linear finite element modeling of the below-knee prosthetic socket interface. Med. Eng. Phys. 17(8):559–566, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang, M., and A. Mak. A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket-roles of interface friction and distal-end boundary conditions. IEEE Trans. Rehabil. Eng. 4:337–346, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, M., A. Mak, and V. Roberts. Finite element modeling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade. Med. Eng. Phys. 20:360–373, 1998.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang, M., and C. Roberts. Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Med. Eng. Phys. 22:607–612, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang, M., A. Turner-Smith, V. Roberts, and A. Tanner. Frictional action at lower limb/prosthetic socket interface. Med. Eng. Phys. 18:207–214, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng, Y. P., A. Mak, and A. Leung. State of the art methods for geometric and biomechanical assessment of residual limbs: a review. J. Rehabil. Res. Dev. 38:487–504, 2001.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Damien Lacroix
    • 1
  • Juan Fernando Ramírez Patiño
    • 2
  1. 1.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  2. 2.Mines FacultyNational University of ColombiaMedellínColombia

Personalised recommendations