Advertisement

Annals of Biomedical Engineering

, Volume 40, Issue 1, pp 213–226 | Cite as

Evaluation of Three Animal Models for Concussion and Serious Brain Injury

  • David C. Viano
  • Anders Hamberger
  • Hayde Bolouri
  • Annette Säljö
Article

Abstract

Three animal models were evaluated in this study involving head impacts of the rat, including the Marmarou drop-weight and two momentum-exchange techniques. In series 1, 36 Wistar rats were hit on the side of the free-moving head using Marmarou’s 450 g impact mass at 4.4, 5.4, and 6.3 m/s. Head acceleration was measured and injuries were observed. The 6.3-m/s side impact resulted in no deaths, no skull fractures, infrequent contusions, and some injuries consistent with diffuse axonal injury. In series 2, 57 Marmarou drop-weight tests were conducted to study head biomechanical responses. Marmarou’s technique involves a head impact followed by prolonged loading into a foam pad under the animal. Based on the literature, the 2 m (6.3 m/s) Marmarou drop causes death, skull fracture, brain and spinal cord contusions, and diffuse axonal injury. These injuries are more severe than that occurring with impact of similar mass and velocity to the free-moving head. Impacts to the free-moving head provide more realistic animal models to study concussion and severe brain injury.

Keywords

Concussion Brain injury Head impact Traumatic brain injury Animal models 

Notes

Acknowledgments

Funding for this research was provided by the National Football League and NFL Charities, which is funded by the NFL Players Association and the League. The authors gratefully appreciate their support.

References

  1. 1.
    Allen, A. R. Surgery of experimental lesion on spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA 57:878–880, 1911.CrossRefGoogle Scholar
  2. 2.
    Anderson, R. W., C. J. Brown, P. C. Blumbergs, A. J. McLean, and N. R. Jones. Impact mechanics and axonal injury in a sheep model. J. Neurotrauma 20(10):961–974, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Chou, C. C., and G. W. Nyquist. Analytical studies of the Head Injury Criterion (HIC). SAE 740082. Warrendale, PA: Society of Automotive Engineers, 1974.CrossRefGoogle Scholar
  4. 4.
    DeFord, S. M., M. S. Wilson, A. C. Rice, T. Clausen, L. K. Rice, A. Barabnova, R. Bullock, and R. J. Hamm. Repeated mild brain injuries result in cognitive impairment in B6C3F1 mice. J. Neurotrauma 19(4):427–438, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Denny-Brown, D., and W. R. Russel. Experimental cerebral concussion. Brain 64:93–164, 1941.CrossRefGoogle Scholar
  6. 6.
    Denny-Brown, D. Brain trauma and concussion. Arch. Neurol. 5:1–3, 1961.PubMedCrossRefGoogle Scholar
  7. 7.
    Dixon, C. E., G. L. Clifton, J. W. Lighthall, A. A. Yaghmai, and R. L. Hayes. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 39(3):253–262, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Dixon, C. E., P. M. Kochanek, H. Q. Yan, J. K. Schiding, R. G. Griffith, E. Baum, D. W. Marion, and S. T. DeKosky. One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J. Neurotrauma 16(2):109–122, 1999.PubMedCrossRefGoogle Scholar
  9. 9.
    Dixon, C. E., J. W. Lighthall, and T. E. Anderson. Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J. Neurotrauma 5:91–104, 1988.PubMedCrossRefGoogle Scholar
  10. 10.
    Dixon, C. E., B. G. Lyeth, J. T. Povlishock, R. L. Findling, R. J. Hamm, A. Marmarou, H. F. Young, and R. L. Hayes. A fluid percussion model of experimental brain injury in the rat. J. Neurosurg. 67(1):110–119, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Ellingson, B. M., R. J. Fijalkowski, F. A. Pintar, N. Yoganandan, and T. A. Gennarelli. New mechanism for inducing closed head injury in the rat. Biomed. Sci. Instrum. 41:86–91, 2005.PubMedGoogle Scholar
  12. 12.
    Feeney, D. M., M. G. Boyse, R. T. Linn, H. M. Murray, and W. G. Dail. Response to cortical injury I. Methodology and local effects of contusion in the rat. Brain Res. 211:67–77, 1981.PubMedCrossRefGoogle Scholar
  13. 13.
    Foda, M. A., and A. Marmarou. A new model of diffuse brain injury in rats. Part II: morphological characterization. J. Neurosurg. 80:301–313, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldman, H., V. Hodgson, M. Morehead, J. Hazlett, and S. Murphy. Cerebrovascular changes in a rat model of moderate closed-head injury. J. Neurotrauma 8(2):129–144, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Gurdjian, E. S., V. R. Hodgson, L. M. Thomas, and L. M. Patrick. Significance of relative movements of scalp, skull, and intracranial contents during impact injury of the head. J. Neurosurg. 29(1):70–72, 1968.Google Scholar
  16. 16.
    Gurdjian, E. S., E. S. Gurdjian, and L. M. Thomas. Tolerance curves of acceleration and intracranial pressure and protective index in experimental head injury. J. Trauma. 6(5):600–604, 1966.PubMedCrossRefGoogle Scholar
  17. 17.
    Gurdjian, E. S. Impact Head Injury: Mechanistic, Clinical and Preventative Correlations. Springfield, IL: Charles C Thomas Publisher, 1975; (Library of Congress No. 74 13844).Google Scholar
  18. 18.
    Gurdjian, E. S. Re-evaluation of the biomechanics of blunt impact injury of the head. Surg. Gynecol. Obstet. 140(6):845–850, 1975; (Review).PubMedGoogle Scholar
  19. 19.
    Gurgjian, E. S., H. R. Lissner, F. R. Latimer, B. F. Haddad, and J. E. Webster. Quantitative determination of acceleration and intracranial pressure in experimental head injury; preliminary report. Neurology 3(6):417–423, 1953.Google Scholar
  20. 20.
    Gurgjian, E. S., H. R. Lissner, J. E. Webster, F. R. Latimer, and B. F. Haddad. Studies on experimental concussion. Neurology 4:674–681, 1954.Google Scholar
  21. 21.
    Gutierrez, E., Y. Huang, K. Haglid, B. Feng, H.-A. Hansson, A. Hamberger, and D. C. Viano. A new model for diffuse brain injury by rotational acceleration: I model, gross appearance and astrocytosis. J. Neurotrauma 18(3):247–259, 2001.PubMedCrossRefGoogle Scholar
  22. 22.
    Hall, E. D. High-dose glucocorticoid treatment improves neurological recovery in head-injured mice. J. Neurosurg. 62(6):882–887, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Hamberger, A., B. Feng, H. Yinlai, E. Gutierrez, S. Jingshan, H.-A. Hansson, D. C. Viano, and K. G. Haglid. Redistribution of neurofilaments and accumulation of β-amyloid protein after brain injury by rotational acceleration of the head. J. Neurotrauma 20:169–178, 2003.PubMedCrossRefGoogle Scholar
  24. 24.
    Hamberger, A., D. C. Viano, A. Säljö, and H. Bolouri. Concussion in professional football: morphology of brain injuries in the NFL concussion model—part 16. Neurosurgery 64:1174–1182, 2009.PubMedCrossRefGoogle Scholar
  25. 25.
    Kallakuri, S., J. M. Cavanaugh, A. C. Ozaktay, and T. Takebayashi. The effect of varying impact energy on diffuse axonal injury in the rat brain: a preliminary study. Exp. Brain Res. 148:419–424, 2003.PubMedGoogle Scholar
  26. 26.
    Kochanek, P. M., D. W. Marion, W. Zhang, J. K. Schiding, M. White, A. M. Palmer, R. S. Clark, M. E. O’Malley, S. D. Styren, C. Ho, et al. Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J. Neurotrauma 12(6):1015–1025, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Lewen, A., A. Fredriksson, G. L. Li, Y. Olsson, and L. Hillered. Behavioural and morphological outcome of mild cortical contusion trauma of the rat brain: influence of NMDA-receptor blockade. Acta Neurochir. (Wien) 141(2):193–202, 1999.CrossRefGoogle Scholar
  28. 28.
    Lewis, S. B., J. W. Finnie, P. C. Blumbergs, G. Scott, J. Manavis, C. Brown, P. L. Reilly, N. R. Jones, and A. J. McLean. A head impact model of early axonal injury in the sheep. J. Neurotrauma 13(9):505–514, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Lighthall, J. W., C. E. Dixon, and T. E. Anderson. Experimental models of brain injury. J. Neurotrauma 6(2):83–97, 1989.PubMedCrossRefGoogle Scholar
  30. 30.
    Lighthall, J. W., H. G. Goshgarian, and C. R. Pinderski. Characterization of axonal injury produced by controlled cortical impact. J. Neurotrauma 7(2):65–76, 1990.PubMedCrossRefGoogle Scholar
  31. 31.
    Lighthall, J. W. Controlled cortical impact: a new experimental brain injury model. J. Neurotrauma 5(1):1–15, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindgren, S. O., and L. Rinder. Decompression in percussion concussion: effects on “concussive response” in rabbits. J. Trauma 7(4):493–499, 1967.PubMedCrossRefGoogle Scholar
  33. 33.
    Lindgren, S. O., and L. Rinder. Experimental studies in head injury. II. Pressure propagation in “percussion concussion”. Biophysik 3(2):174–180, 1966.PubMedCrossRefGoogle Scholar
  34. 34.
    Marmarou, A., M. A. Abd-Elfattah Foda, W. V. D. Brink, J. Campbell, and K. Demetriadou. A new model of diffuse brain injury in rats, part I: pathophysiology and biomechanics. J. Neurosurg. 80:291–300, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Meyer, J. S., and D. Denny-Brown. Studies of cerebral circulation in brain injury. II. Cerebral concussion. Electroencephalogr. Clin. Neurophysiol. Suppl. 7(4):529–544, 1955.Google Scholar
  36. 36.
    Meyer, J. S., and D. Denny-Brown. Studies of cerebral circulation in brain injury. I. Validity of combined local cerebral electropolarography, thermometry and steady potentials as an indicator of local circulatory and functional changes. Electroencephalogr. Clin. Neurophysiol. Suppl. 7(4):511–528, 1955.Google Scholar
  37. 37.
    Meyer, J. S. Studies of cerebral circulation in brain injury. III. Cerebral contusion, laceration and brain stem injury. Electroencephalogr. Clin. Neurophysiol. Suppl. 8(1):107–116, 1956.Google Scholar
  38. 38.
    Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11(1):47–60, 1984.Google Scholar
  39. 39.
    Nilsson, B., and C. H. Nordstrom. Experimental head injury in the rat. Part 3: cerebral blood flow and oxygen consumption after concussive impact acceleration. J. Neurosurg. 47:262–273, 1977.PubMedCrossRefGoogle Scholar
  40. 40.
    Nilsson, B., and C. H. Nordstrom. Rate of cerebral energy consumption in concussive head injury in the rat. J. Neurosurg. 47:274–281, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Nilsson, B., U. Ponten, and G. Voigt. Experimental head injury in the rat. Part 1: mechanics, pathophysiology, and morphology in an impact acceleration trauma model. J. Neurosurg. 47:241–251, 1977.PubMedCrossRefGoogle Scholar
  42. 42.
    Nilsson, B., and U. Ponten. Exerimental head injury in the rat. Part 2: regional brain energy metabolism in concussive trauma. J. Neurosurg. 47:252–261, 1977.PubMedCrossRefGoogle Scholar
  43. 43.
    Ommaya, A. K., P. Yarnell, A. E. Hirsch, and E. H. Harris. Scaling of experimental data on cerebral concussion in sub-human primates to concussion threshold for man. 11th Stapp Car Crash Conference, SAE 670906. Warrendale, PA: Society of Automotive Engineers, pp. 73–80, 1967.CrossRefGoogle Scholar
  44. 44.
    Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–814, 2003.PubMedGoogle Scholar
  45. 45.
    Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: location and direction of helmet impacts—part 2. Neurosurgery 53:1328–1341, 2003.PubMedCrossRefGoogle Scholar
  46. 46.
    Sullivan, H. G., J. Martinez, D. P. Becker, J. D. Miller, R. Griffith, and A. O. Wist. Fluid-percussion model of mechanical brain injury in the cat. J. Neurosurg. 45(5):521–534, 1976.PubMedGoogle Scholar
  47. 47.
    Tornheim, P. A., B. H. Liwnicz, C. S. Hirsch, D. L. Brown, and R. L. McLaurin. Acute responses to blunt head trauma. Experimental model and gross pathology. J. Neurosurg. 59(3):431–438, 1983.PubMedCrossRefGoogle Scholar
  48. 48.
    Tornheim, P. A., R. L. McLaurin, and J. F. Thorpe. The edema of cerebral contusion. Surg. Neurol. 5(3):171–175, 1976.PubMedGoogle Scholar
  49. 49.
    Tornheim, P. A., and R. L. McLaurin. Acute changes in regional brain water content following experimental closed head injury. J. Neurosurg. 55(3):407–413, 1981.PubMedCrossRefGoogle Scholar
  50. 50.
    Viano, D. C., A. Hamberger, H. Bolouri, and A. Säljö. Concussion in professional football: animal model of brain injury—part 15. Neurosurgery 64:1162–1173, 2009.PubMedCrossRefGoogle Scholar
  51. 51.
    Viano, D. C., and I. V. Lau. A viscous tolerance criterion for soft tissue injury assessment. J. Biomech. 21(5):387–399, 1988.Google Scholar
  52. 52.
    Viano, D. C., and P. Lovsund. Biomechanics of brain and spinal cord injury: analysis of neurophysiological experiments. Crash Prev. Inj. Control 1(1):35–43, 1999.CrossRefGoogle Scholar
  53. 53.
    Walker, A. E., J. J. Kollross, and T. J. Case. The physiological basis of concussion. J. Neurosurg. 1:103–116, 1944.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • David C. Viano
    • 1
  • Anders Hamberger
    • 2
  • Hayde Bolouri
    • 2
  • Annette Säljö
    • 2
  1. 1.ProBiomechanics LLCBloomfield HillsUSA
  2. 2.Department of Anatomy and Cell BiologyUniversity of GöteborgGöteborgSweden

Personalised recommendations