Annals of Biomedical Engineering

, Volume 40, Issue 2, pp 251–262 | Cite as

Lensfree Optofluidic Microscopy and Tomography

Article

Abstract

Microfluidic devices aim at miniaturizing, automating, and lowering the cost of chemical and biological sample manipulation and detection, hence creating new opportunities for lab-on-a-chip platforms. Recently, optofluidic devices have also emerged where optics is used to enhance the functionality and the performance of microfluidic components in general. Lensfree imaging within microfluidic channels is one such optofluidic platform, and in this article, we focus on the holographic implementation of lensfree optofluidic microscopy and tomography, which might provide a simpler and more powerful solution for three-dimensional (3D) on-chip imaging. This lensfree optofluidic imaging platform utilizes partially coherent digital in-line holography to allow phase and amplitude imaging of specimens flowing through micro-channels, and takes advantage of the fluidic flow to achieve higher spatial resolution imaging compared to a stationary specimen on the same chip. In addition to this, 3D tomographic images of the same samples can also be reconstructed by capturing lensfree projection images of the samples at various illumination angles as a function of the fluidic flow. Based on lensfree digital holographic imaging, this optofluidic microscopy and tomography concept could be valuable especially for providing a compact, yet powerful toolset for lab-on-a-chip devices.

Keywords

Holography Pixel super-resolution On-chip imaging Filtered back-projection Diffraction 

References

  1. 1.
    Agarwal, A., and R. K. Sharma. Automation is the key to standardized semen analysis using the automated SQA-V sperm quality analyzer. Fertil. Steril. 87:156–162, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    Arslan, I., J. R. Tong, and P. A. Midgley. Reducing the missing wedge: high-resolution dual-axis tomography of inorganic materials. Ultramicroscopy 106:994–1000, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishara, W., U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11:1276, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Bishara, W., T.-W. Su, A. F. Coskun, and A. Ozcan. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express 18:11181, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Brady, D. J., K. Choi, D. L. Marks, R. Horisaki, and S. Lim. Compressive holography. Opt. Express 17:13040–13049, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Charrière, F., N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14:7005–7013, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Coskun, A. F., I. Sencan, T. Su, and A. Ozcan. Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view. PLoS One 6(1):e15955, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Coskun, A. F., I. Sencan, T. Su, and A. Ozcan. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst 136(17):3512–3518, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Cuche, E., P. Marquet, and C. Depeursinge. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39:4070, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Cui, X., L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl Acad. Sci. USA 105:10670–10675, 2008.PubMedCrossRefGoogle Scholar
  11. 11.
    Debailleul, M., B. Simon, V. Georges, O. Haeberle, and V. Lauer. Holographic microscopy and diffractive microtomography of transparent samples. Meas. Sci. Technol. 19:074009, 2008.CrossRefGoogle Scholar
  12. 12.
    Fainman, Y., L. Lee, D. Psaltis, and C. Yang. Optofluidics: Fundamentals, Devices, and Applications. New York: McGraw-Hill, 2009.Google Scholar
  13. 13.
    Fauver, M., and E. J. Seibel. Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Opt. Express 13:4210–4223, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3:27, 1978.PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia-Sucerquia, J., W. Xu, M. H. Jericho, and H. J. Kreuzer. Immersion digital in-line holographic microscopy. Opt. Lett. 31:1211, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Haeberle, O., K. Belkebir, H. Giovaninni, and A. Sentenac. Tomographic diffractive microscopy: basics, techniques and perspectives. J. Mod. Opt. 57:686–699, 2010.CrossRefGoogle Scholar
  17. 17.
    Hahn, J., S. Lim, K. Choi, R. Horisaki, and D. J. Brady. Video-rate compressive holographic microscopic tomography. Opt. Express 19:7289–7298, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Hardie, R. C. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37:247, 1998.CrossRefGoogle Scholar
  19. 19.
    Heng, X., D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang. Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab Chip 6:1274–1276, 2006.PubMedCrossRefGoogle Scholar
  20. 20.
    Isikman, S. O., W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl Acad. Sci. 108:7296–7301, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Isikman, S. O., W. Bishara, H. Zhu, and A. Ozcan. Optofluidic tomography on a chip. Appl. Phys. Lett. 98:161109, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee, L. M., X. Cui, and C. Yang. The application of optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed. Microdevices 11:951–958, 2009.CrossRefGoogle Scholar
  23. 23.
    Li, Z., Z. Zhang, T. Emery, A. Scherer, and D. Psaltis. Single mode optofluidic distributed feedback dye laser. Opt. Express 14:696, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Meng, H., and F. Hussain. In-line recording and off-axis viewing technique for holographic particle velocimetry. Appl. Opt. 34:1827–1840, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Monat, C., P. Domachuk, and B. J. Eggleton. Integrated optofluidics: a new river of light. Nat. Photon. 1:106–114, 2007.CrossRefGoogle Scholar
  26. 26.
    Mudanyali, O., D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417, 2010.PubMedCrossRefGoogle Scholar
  27. 27.
    Oh, C., S. O. Isikman, B. Khademhosseinieh, and A. Ozcan. On-chip differential interference contrast microscopy using lensless digital holography. Opt. Express 18:4717, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Pang, S., X. Cui, J. DeModena, Y. M. Wang, P. Sternberg, and C. Yang. Implementation of color capable optofluidic microscope on a RGB CMOS color sensor chip substrate. Lab Chip 10:411–414, 2010.PubMedCrossRefGoogle Scholar
  29. 29.
    Park, S. C., M. K. Park, and M. G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20:21–36, 2003.CrossRefGoogle Scholar
  30. 30.
    Psaltis, D., S. R. Quake, and C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Radermacher, M. Weighted back-projection methods. In: Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell (2nd ed.). New York: Springer, 2006.Google Scholar
  32. 32.
    Sharpe, J. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545, 2002.PubMedCrossRefGoogle Scholar
  33. 33.
    Squires, T., and S. Quake. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026, 2005.CrossRefGoogle Scholar
  34. 34.
    Sung, Y., W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17:266–277, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Tseng, D., O. Mudanyali, C. Oztoprak, O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan. Lensfree microscopy on a cellphone. Lab Chip 10:1787, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Verhoeven, D. Limited-data computed tomography algorithms for the physical sciences. Appl. Opt. 32:3654–3736, 1993.CrossRefGoogle Scholar
  37. 37.
    Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Yu, L., and M. K. Kim. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt. Lett. 30:2092–2094, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Waheb Bishara
    • 1
  • Serhan O. Isikman
    • 1
  • Aydogan Ozcan
    • 1
    • 2
    • 3
  1. 1.Electrical Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.Bioengineering DepartmentUniversity of CaliforniaLos AngelesUSA
  3. 3.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations