Fiber Stretch and Reorientation Modulates Mesenchymal Stem Cell Morphology and Fibrous Gene Expression on Oriented Nanofibrous Microenvironments

  • Su-Jin Heo
  • Nandan L. Nerurkar
  • Brendon M. Baker
  • Jung-Woog Shin
  • Dawn M. Elliott
  • Robert L. MauckEmail author


Because differentiation of mesenchymal stem cells (MSCs) is enacted through the integration of soluble signaling factors and physical cues, including substrate architecture and exogenous mechanical stimulation, it is important to understand how micropatterned biomaterials may be optimized to enhance differentiation for the formation of functional soft tissues. In this work, macroscopic strain applied to MSCs in an aligned nanofibrous microenvironment elicited cellular and nuclear deformations that varied depending on scaffold orientation. Reorientation of aligned, oriented MSCs corresponded at the microscopic scale with the affine approximation of their deformation based on macroscopic strains. Moreover, deformations at the subcellular scale corresponded with scaffold orientation, with changes in nuclear shape depending on the direction of substrate alignment. Notably, these deformations induced changes in gene expression that were also dependent on scaffold and cell orientations. These findings demonstrate that directional biases in substrate microstructure convey direction-dependent mechanosensitivity to MSCs and provide an experimental framework in which to explore the mechanistic underpinnings of this response.


Mechanobiology Electrospinning Biomaterials Microenvironment 



This work was supported with funding from the National Institutes of Health (R01 EB02425, R01 AR056624), the Penn Center for Musculoskeletal Disorders, and the Human Frontiers in Science Program.


  1. 1.
    Baker, B. M., and R. L. Mauck. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–1977, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    Baker, B. M., A. S. Nathan, A. O. Gee, and R. L. Mauck. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials 31(24):6190–6200, 2010.PubMedCrossRefGoogle Scholar
  3. 3.
    Baker, B. M., A. S. Nathan, G. R. Huffman, and R. L. Mauck. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr Cartil 17(3):336–345, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Baker, B. M., N. L. Nerurkar, J. A. Burdick, D. M. Elliott, and R. L. Mauck. Fabrication and modeling of dynamic multi-polymer nanofibrous scaffold. J. Biomech. Eng. 131(10):101012, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Baker, B. M., S. P. Shah, A. H. Huang, and R. L. Mauck. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng. Part A 17(9):1–11, 2011.CrossRefGoogle Scholar
  6. 6.
    Bruehlmann, S. B., P. A. Hulme, and N. A. Duncan. In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains. J. Biomech. 37(2):223–231, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Bruehlmann, S. B., J. R. Matyas, and N. A. Duncan. Collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine 29(23):2612–2620, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Connelly, J. T., A. J. Garcia, and M. E. Levenston. Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28:1071–1083, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Dahl, K. N., E. A. Booth-Gauthier, B. Ladoux, et al. In the middle of it all: mutual mechanical regulation between the nucleus and the cytoskeleton. J. Biomech. 43(1):2–8, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Dahl, K. N., S. M. Kahn, K. L. Wilson, and D. E. Discher. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117:4779–4786, 2004.PubMedCrossRefGoogle Scholar
  11. 11.
    Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102(11):1307–1318, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Driscoll, T. D., N. L. Nerurkar, N. T. Jacobs, D. M. Elliott, and R. L. Mauck. Shear mechanics of electrospun scaffold for annulus fibrosus tissue engineering. J. Mech. Behav. Biomed. Mater. (in press).Google Scholar
  14. 14.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang, A. H., M. J. Farrell, M. Kim, and R. L. Mauck. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogels. Eur. Cell. Mater. 19:72–85, 2010.PubMedGoogle Scholar
  16. 16.
    Huang, A. H., A. Stein, and R. L. Mauck. The complex transcriptional topography of mesenchymal stem cell chondrogenesis for cartilage tissue engineering. Tissue Eng. Part A 16(9):2699–2708, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurpinski, K., J. Chu, C. Hashi, and S. Li. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl Acad. Sci. USA 103(44):16095–16100, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27(12):1596–1602, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, Y., J. S. Chu, K. Kurpinski, X. Li, D. M. Bautista, L. Yang, K. L. Paul Sung, and S. Li. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys. J. 100(8):1902–1909, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, W. J., R. L. Mauck, J. A. Cooper, X. Yuan, and R. S. Tuan. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40(8):1686–1693, 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    Lynch, H. A., W. Johannessen, J. P. Wu, A. Jawa, and D. M. Elliott. Effect of fiber orientation and strain-rate on the uniaxial tensile material properties of tendon. J. Biomech. Eng. 125:726–731, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Marchand, F., and A. M. Ahmed. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Mauck, R. L., B. M. Baker, N. L. Nerurkar, J. A. Burdick, W. J. Li, R. S. Tuan, and D. M. Elliott. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced. Tissue Eng. Part B Rev. 15:171–193, 2009.PubMedCrossRefGoogle Scholar
  24. 24.
    Mauck, R. L., X. Yuan, and R. S. Tuan. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr Cartil 14(2):179–189, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6(4):483–495, 2004.PubMedCrossRefGoogle Scholar
  26. 26.
    Moffat, K. L., A. S. Kwei, J. P. Spalazzi, S. B. Doty, W. N. Levine, and H. H. Lu. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A 15(1):115–126, 2009.PubMedCrossRefGoogle Scholar
  27. 27.
    Mow, V. C., and R. Huiskes. Basic Orthopaedic Biomechanics and Mechanobiology. Philadelphia, PA: Lippincott Williams & Wilkins, 1991.Google Scholar
  28. 28.
    Nathan, A. S., B. M. Baker, N. L. Nerurkar, and R. L. Mauck. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 7(1):57–66, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Nerurkar, N. L., B. M. Baker, S. Sen, E. E. Wible, D. M. Elliott, and R. L. Mauck. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8(12):986–992, 2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Nerurkar, N. L., D. M. Elliott, and R. L. Mauck. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J. Orthop. Res. 25(8):1018–1028, 2007.PubMedCrossRefGoogle Scholar
  31. 31.
    Nerurkar, N. L., R. L. Mauck, and D. M. Elliott. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus. Spine 33(25):2691–2701, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Nerurkar, N. L., R. L. Mauck, and D. M. Elliott. Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering. Biomech. Model Mechanobiol. doi: 10.1007/s10237-011-0288-0, 2011.
  33. 33.
    Nerurkar, N. L., S. Sen, A. H. Huang, D. M. Elliott, and R. L. Mauck. Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine 35(8):867–873, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Nesti, L. J., W. J. Li, R. M. Shanti, Y. J. Jiang, W. Jackson, B. A. Freedman, T. R. Kuklo, J. R. Giuliani, and R. S. Tuan. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng. Part A 14(9):1527–1537, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Peltz, C. D., S. M. Perry, C. L. Getz, and L. J. Soslowsky. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27(3):416–420, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Petrie, T. A., J. E. Raynor, D. W. Dumbauld, T. T. Lee, S. Jagtap, K. L. Templeman, D. M. Collard, and A. J. Garcia. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci. Transl. Med. 2(45):45ra60, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.PubMedCrossRefGoogle Scholar
  38. 38.
    Stella, J. A., J. Liao, Y. Hong, W. David Merryman, W. R. Wagner, and M. S. Sacks. Tissue-to-cellular level deformation coupling in cell-microintegrated elastomeric scaffolds. Biomaterials 29(22):3228–3236, 2008.PubMedCrossRefGoogle Scholar
  39. 39.
    Stella, J. A., W. R. Wagner, and M. S. Sacks. Scale-dependent fiber kinematics of elastomeric electrospun scaffolds for soft tissue engineering. J. Biomed. Mater. Res. A 93(3):1032–1042, 2010.PubMedGoogle Scholar
  40. 40.
    Thomas, C. H., J. H. Collier, C. S. Sfeir, and K. E. Healy. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. USA 99(4):1972–1977, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Upton, M. L., C. L. Gilchrist, F. Guilak, and L. A. Setton. Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys. J. 95(4):2116–2124, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Webster, M., K. L. Witkin, and O. Cohen-Fix. Sizing up the nucleus: nuclear shape, size and nuclear envelope assembly. J. Cell Sci. 122:1970–1978, 2009.CrossRefGoogle Scholar
  43. 43.
    Xie, J., X. Li, J. Lipner, C. N. Manning, A. G. Schwartz, S. Thomopoulos, and Y. Xia. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale 2(6):923–926, 2010.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang, L., R. A. Kandel, G. Chang, and J. P. Santerre. Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation. J. Biomed. Mater. Res. A 91(4):1089–1099, 2009.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Su-Jin Heo
    • 1
  • Nandan L. Nerurkar
    • 1
  • Brendon M. Baker
    • 1
    • 3
  • Jung-Woog Shin
    • 2
  • Dawn M. Elliott
    • 1
    • 3
  • Robert L. Mauck
    • 1
    • 3
    Email author
  1. 1.McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Biomedical EngineeringInje UniversityGimhaeRepublic of Korea
  3. 3.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations