Advertisement

Annals of Biomedical Engineering

, 39:2329 | Cite as

Endothelial Cell Micropatterning: Methods, Effects, and Applications

  • Deirdre E. J. Anderson
  • Monica T. HindsEmail author
Article

Abstract

The effects of flow on endothelial cells (ECs) have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of EC morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines EC micropatterning research by exploring both the many alternative methods used to alter EC morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in EC proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, are discussed.

Keywords

Endothelial cell Micropatterning Cytoskeleton Tissue engineering Angiogenesis 

Notes

Acknowledgments

The authors gratefully acknowledge funding from the American Heart Association grant 09BGIA2260384 and National Institutes of Health grants R01HL103728 and R01HL 095474.

Conflict of Interest

There are no conflicts of interest.

References

  1. 1.
    Amirpour, M. L., P. Ghosh, W. M. Lackowski, R. M. Crooks, and M. V. Pishko. Mammalian cell cultures on micropatterned surfaces of weak-acid, polyelectrolyte hyperbranched thin films on gold. Anal. Chem. 73:1560–1566, 2001.PubMedCrossRefGoogle Scholar
  2. 2.
    Barbucci, R., S. Lamponi, A. Magnani, and D. Pasqui. Micropatterned surfaces for the control of endothelial cell behaviour. Biomol. Eng. 19:161–170, 2002.PubMedCrossRefGoogle Scholar
  3. 3.
    Barbucci, R., S. Lamponi, A. Magnani, F. M. Piras, A. Rossi, and E. Weber. Role of the Hyal-Cu (II) complex on bovine aortic and lymphatic endothelial cells behavior on microstructured surfaces. Biomacromolecules 6:212–219, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhadriraju, K., M. Yang, S. Alom Ruiz, D. Pirone, J. Tan, and C. S. Chen. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp. Cell Res. 313:3616–3623, 2007.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:356–363, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, Y. M., K. C. Shen, J. P. Gong, and Y. Osada. Selective cell spreading, proliferation, and orientation on micropatterned gel surfaces. J. Nanosci. Nanotechnol. 7:773–779, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Chi, J. T., H. Y. Chang, G. Haraldsen, F. L. Jahnsen, O. G. Troyanskaya, D. S. Chang, Z. Wang, S. G. Rockson, M. van de Rijn, D. Botstein, and P. O. Brown. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100:10623–10628, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Co, C. C., Y. C. Wang, and C. C. Ho. Biocompatible micropatterning of two different cell types. J. Am. Chem. Soc. 127:1598–1599, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6:16–26, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Daxini, S. C., J. W. Nichol, A. L. Sieminski, G. Smith, K. J. Gooch, and V. P. Shastri. Micropatterned polymer surfaces improve retention of endothelial cells exposed to flow-induced shear stress. Biorheology 43:45–55, 2006.PubMedGoogle Scholar
  14. 14.
    del Alamo, J. C., G. N. Norwich, Y. S. Li, J. C. Lasheras, and S. Chien. Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 105:15411–15416, 2008.PubMedCrossRefGoogle Scholar
  15. 15.
    Deng, D. X., A. Tsalenko, A. Vailaya, A. Ben-Dor, R. Kundu, I. Estay, R. Tabibiazar, R. Kincaid, Z. Yakhini, L. Bruhn, and T. Quertermous. Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli. Circ. Res. 98:200–208, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Di Canio, C., S. Lamponi, and R. Barbucci. Spiral and square microstructured surfaces: the effect of the decreasing size of photo-immobilized hyaluronan domains on cell growth. J. Biomed. Mater. Res. A 92:276–284, 2010.PubMedGoogle Scholar
  17. 17.
    Dike, L. E., C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides, and D. E. Ingber. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Biol. Anim. 35:441–448, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Duncan, A. C., F. Rouais, S. Lazare, L. Bordenave, and C. Baquey. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloids Surf. B 54:150–159, 2007.CrossRefGoogle Scholar
  19. 19.
    Elloumi Hannachi, I., K. Itoga, Y. Kumashiro, J. Kobayashi, M. Yamato, and T. Okano. Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials 30:5427–5432, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    Elloumi-Hannachi, I., M. Maeda, M. Yamato, and T. Okano. Portable microcontact printing device for cell culture. Biomaterials 31:8974–8979, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Feinberg, A. W., J. F. Schumacher, and A. B. Brennan. Engineering high-density endothelial cell monolayers on soft substrates. Acta Biomater. 5:2013–2024, 2009.PubMedCrossRefGoogle Scholar
  22. 22.
    Feinberg, A. W., W. R. Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson, and A. B. Brennan. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J. Biomed. Mater. Res. A 86:522–534, 2008.PubMedGoogle Scholar
  23. 23.
    Flusberg, D. A., Y. Numaguchi, and D. E. Ingber. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol. Biol. Cell 12:3087–3094, 2001.PubMedGoogle Scholar
  24. 24.
    Gagne, L., G. Rivera, and G. Laroche. Micropatterning with aerosols: application for biomaterials. Biomaterials 27:5430–5439, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Gao, D., G. Kumar, C. Co, and C. C. Ho. Formation of capillary tube-like structures on micropatterned biomaterials. Adv. Exp. Med. Biol. 614:199–205, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Gauvreau, V., and G. Laroche. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjug. Chem. 16:1088–1097, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Gray, D. S., W. F. Liu, C. J. Shen, K. Bhadriraju, C. M. Nelson, and C. S. Chen. Engineering amount of cell–cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp. Cell Res. 314:2846–2854, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Gray, D. S., J. Tien, and C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66:605–614, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Remy, S. Bellance, P. Chabassier, J. C. Fricain, and J. Amedee. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6:2494–2500, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Hsu, S., R. Thakar, and S. Li. Haptotaxis of endothelial cell migration under flow. Methods Mol. Med. 139:237–250, 2007.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu, S., R. Thakar, D. Liepmann, and S. Li. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem. Biophys. Res. Commun. 337:401–409, 2005.PubMedCrossRefGoogle Scholar
  32. 32.
    Huang, N. F., B. Patlolla, O. Abilez, H. Sharma, J. Rajadas, R. E. Beygui, C. K. Zarins, and J. P. Cooke. A matrix micropatterning platform for cell localization and stem cell fate determination. Acta Biomater. 6:4614–4621, 2010.PubMedCrossRefGoogle Scholar
  33. 33.
    Ito, Y., H. Hasuda, H. Terai, and T. Kitajima. Culture of human umbilical vein endothelial cells on immobilized vascular endothelial growth factor. J. Biomed. Mater. Res. A 74:659–665, 2005.PubMedGoogle Scholar
  34. 34.
    Itoga, K., J. Kobayashi, Y. Tsuda, M. Yamato, and T. Okano. Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication. Anal. Chem. 80:1323–1327, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Itoga, K., J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials 27:3005–3009, 2006.PubMedCrossRefGoogle Scholar
  36. 36.
    Itoga, K., M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano. Cell micropatterning using photopolymerization with a liquid crystal device commercial projector. Biomaterials 25:2047–2053, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Itoga, K., M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano. Micropatterned surfaces prepared using a liquid crystal projector-modified photopolymerization device and microfluidics. J. Biomed. Mater. Res. A 69:391–397, 2004.PubMedCrossRefGoogle Scholar
  38. 38.
    Iwanaga, S., Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, and T. Okano. Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation. Biomaterials 26:5395–5404, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Janakiraman, V., B. L. Kienitz, and H. Baskaran. Lithography technique for topographical micropatterning of collagen-glycosaminoglycan membranes for tissue engineering applications. J. Med. Device 1:233–237, 2007.PubMedCrossRefGoogle Scholar
  40. 40.
    Jang, K., K. Sato, Y. Tanaka, Y. Xu, M. Sato, T. Nakajima, K. Mawatari, T. Konno, K. Ishihara, and T. Kitamori. An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel. Lab Chip 10:1937–1945, 2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang, X., S. Takayama, X. Qian, E. Ostuni, H. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides. Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18:3273–3280, 2002.CrossRefGoogle Scholar
  42. 42.
    Kam, L., and S. G. Boxer. Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J. Biomed. Mater. Res. 55:487–495, 2001.PubMedCrossRefGoogle Scholar
  43. 43.
    Kato, S., J. Ando, and T. Matsuda. MRNA expression on shape-engineered endothelial cells: adhesion molecules ICAM-1 and VCAM-1. J. Biomed. Mater. Res. 54:366–372, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Kidoaki, S., and T. Matsuda. Shape-engineered vascular endothelial cells: nitric oxide production, cell elasticity, and actin cytoskeletal features. J. Biomed. Mater. Res. A 81:728–735, 2007.PubMedGoogle Scholar
  45. 45.
    Kofron, C. M., and D. Hoffman-Kim. Optimization by response surface methodology of confluent and aligned cellular monolayers for nerve guidance. Cell. Mol. Bioeng. 2:554–572, 2009.PubMedCrossRefGoogle Scholar
  46. 46.
    Kulkarni, S. S., R. Orth, M. Ferrari, and N. I. Moldovan. Micropatterning of endothelial cells by guided stimulation with angiogenic factors. Biosens. Bioelectron. 19:1401–1407, 2004.PubMedCrossRefGoogle Scholar
  47. 47.
    Lamponi, S., C. Di Canio, M. Forbicioni, and R. Barbucci. Heterotypic interaction of fibroblasts and endothelial cells on restricted area. J. Biomed. Mater. Res. A 92:733–745, 2010.PubMedGoogle Scholar
  48. 48.
    Lamponi, S., M. Forbicioni, and R. Barbucci. The role of fibronectin in cell adhesion to spiral patterned TiO2 nanoparticles. J. Appl. Biomater. Biomech. 7:104–110, 2009.PubMedGoogle Scholar
  49. 49.
    Lawson, N. D., and B. M. Weinstein. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3:674–682, 2002.PubMedCrossRefGoogle Scholar
  50. 50.
    Leslie-Barbick, J. E., C. Shen, C. Chen, and J. L. West. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. A 17:221–229, 2011.CrossRefGoogle Scholar
  51. 51.
    Li, S., S. Bhatia, Y. L. Hu, Y. T. Shiu, Y. S. Li, S. Usami, and S. Chien. Effects of morphological patterning on endothelial cell migration. Biorheology 38:101–108, 2001.PubMedGoogle Scholar
  52. 52.
    Lidington, E. A., D. L. Moyes, A. M. McCormack, and M. L. Rose. A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl. Immunol. 7:239–246, 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin, X., and B. P. Helmke. Micropatterned structural control suppresses mechanotaxis of endothelial cells. Biophys. J. 95:3066–3078, 2008.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu, W. F., C. M. Nelson, J. L. Tan, and C. S. Chen. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ. Res. 101:e44–e52, 2007.PubMedCrossRefGoogle Scholar
  55. 55.
    Matsuda, T., K. Inoue, and T. Sugawara. Development of micropatterning technology for cultured cells. ASAIO Trans. 36:M559–M562, 1990.PubMedGoogle Scholar
  56. 56.
    Matsuda, T., and T. Sugawara. Development of surface photochemical modification method for micropatterning of cultured cells. J. Biomed. Mater. Res. 29:749–756, 1995.PubMedCrossRefGoogle Scholar
  57. 57.
    Moon, J. J., M. S. Hahn, I. Kim, B. A. Nsiah, and J. L. West. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng. A 15:579–585, 2009.CrossRefGoogle Scholar
  58. 58.
    Nahmias, Y. K., B. Z. Gao, and D. J. Odde. Dimensionless parameters for the design of optical traps and laser guidance systems. Appl. Opt. 43:3999–4006, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Nahmias, Y., and D. J. Odde. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc. 1:2288–2296, 2006.PubMedCrossRefGoogle Scholar
  60. 60.
    Nakamura, M., A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11:1658–1666, 2005.PubMedCrossRefGoogle Scholar
  61. 61.
    Nakayama, Y., J. M. Anderson, and T. Matsuda. Laboratory-scale mass production of a multi-micropatterned grafted surface with different polymer regions. J. Biomed. Mater. Res. 53:584–591, 2000.PubMedCrossRefGoogle Scholar
  62. 62.
    Nelson, C. M., D. M. Pirone, J. L. Tan, and C. S. Chen. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15:2943–2953, 2004.PubMedCrossRefGoogle Scholar
  63. 63.
    Nishiyama, Y., M. Nakamura, C. Henmi, K. Yamaguchi, S. Mochizuki, H. Nakagawa, and K. Takiura. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng. 131:035001, 2009.PubMedCrossRefGoogle Scholar
  64. 64.
    Okochi, N., T. Okazaki, and H. Hattori. Encouraging effect of cadherin-mediated cell–cell junctions on transfer printing of micropatterned vascular endothelial cells. Langmuir 25:6947–6953, 2009.PubMedCrossRefGoogle Scholar
  65. 65.
    Ouyang, M., J. Sun, S. Chien, and Y. Wang. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc. Natl. Acad. Sci. USA 105:14353–14358, 2008.PubMedCrossRefGoogle Scholar
  66. 66.
    Papenburg, B. J., L. Vogelaar, L. A. Bolhuis-Versteeg, R. G. Lammertink, D. Stamatialis, and M. Wessling. One-step fabrication of porous micropatterned scaffolds to control cell behavior. Biomaterials 28:1998–2009, 2007.PubMedCrossRefGoogle Scholar
  67. 67.
    Pompe, T., S. Zschoche, N. Herold, K. Salchert, M. F. Gouzy, C. Sperling, and C. Werner. Maleic anhydride copolymers—a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079, 2003.PubMedCrossRefGoogle Scholar
  68. 68.
    Raghavan, S., C. M. Nelson, J. D. Baranski, E. Lim, and C. S. Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. A 16:2255–2263, 2010.CrossRefGoogle Scholar
  69. 69.
    Rhee, S. W., A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. Patterned cell culture inside microfluidic devices. Lab Chip 5:102–107, 2005.PubMedCrossRefGoogle Scholar
  70. 70.
    Roca-Cusachs, P., J. Alcaraz, R. Sunyer, J. Samitier, R. Farre, and D. Navajas. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–4995, 2008.PubMedCrossRefGoogle Scholar
  71. 71.
    Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123:e18–e209, 2011.PubMedCrossRefGoogle Scholar
  72. 72.
    Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286, 1987.PubMedCrossRefGoogle Scholar
  73. 73.
    Satomi, T., Y. Nagasaki, H. Kobayashi, H. Otsuka, and K. Kataoka. Density control of poly(ethylene glycol) layer to regulate cellular attachment. Langmuir 23:6698–6703, 2007.PubMedCrossRefGoogle Scholar
  74. 74.
    Sung, H. J., A. Yee, S. G. Eskin, and L. V. McIntire. Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types. Am. J. Physiol. Cell Physiol. 293:C87–C94, 2007.PubMedCrossRefGoogle Scholar
  75. 75.
    Takano, H., J. Y. Sul, M. L. Mazzanti, R. T. Doyle, P. G. Haydon, and M. D. Porter. Micropatterned substrates: approach to probing intercellular communication pathways. Anal. Chem. 74:4640–4646, 2002.PubMedCrossRefGoogle Scholar
  76. 76.
    Tan, J. L., W. Liu, C. M. Nelson, S. Raghavan, and C. S. Chen. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10:865–872, 2004.PubMedCrossRefGoogle Scholar
  77. 77.
    Trkov, S., G. Eng, R. Di Liddo, P. P. Parnigotto, and G. Vunjak-Novakovic. Micropatterned three-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J. Tissue Eng. Regen. Med. 4:205–215, 2010.PubMedCrossRefGoogle Scholar
  78. 78.
    Uttayarat, P., M. Chen, M. Li, F. D. Allen, R. J. Composto, and P. I. Lelkes. Microtopography and flow modulate the direction of endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 294:H1027–H1035, 2008.PubMedCrossRefGoogle Scholar
  79. 79.
    Uttayarat, P., A. Perets, M. Li, P. Pimton, S. J. Stachelek, I. Alferiev, R. J. Composto, R. J. Levy, and P. I. Lelkes. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater. 6:4229–4237, 2010.PubMedCrossRefGoogle Scholar
  80. 80.
    Uttayarat, P., G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J. Biomed. Mater. Res. A 75:668–680, 2005.PubMedGoogle Scholar
  81. 81.
    van Kooten, T. G., and A. F. von Recum. Cell adhesion to textured silicone surfaces: the influence of time of adhesion and texture on focal contact and fibronectin fibril formation. Tissue Eng. 5:223–240, 1999.PubMedCrossRefGoogle Scholar
  82. 82.
    Vartanian, K. B., M. A. Berny, O. J. McCarty, S. R. Hanson, and M. T. Hinds. Cytoskeletal structure regulates endothelial cell immunogenicity independent of fluid shear stress. Am. J. Physiol. Cell Physiol. 298:C333–C341, 2010.PubMedCrossRefGoogle Scholar
  83. 83.
    Vartanian, K. B., S. J. Kirkpatrick, S. R. Hanson, and M. T. Hinds. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 371:787–792, 2008.PubMedCrossRefGoogle Scholar
  84. 84.
    Vartanian, K. B., S. J. Kirkpatrick, O. J. McCarty, T. Q. Vu, S. R. Hanson, and M. T. Hinds. Distinct extracellular matrix microenvironments of progenitor and carotid endothelial cells. J. Biomed. Mater. Res. A 91:528–539, 2009.PubMedGoogle Scholar
  85. 85.
    Wang, Y. C., and C. C. Ho. Micropatterning of proteins and mammalian cells on biomaterials. FASEB J. 18:525–527, 2004.PubMedGoogle Scholar
  86. 86.
    Woodrow, K. A., M. J. Wood, J. K. Saucier-Sawyer, C. Solbrig, and W. M. Saltzman. Biodegradable meshes printed with extracellular matrix proteins support micropatterned hepatocyte cultures. Tissue Eng. A 15:1169–1179, 2009.CrossRefGoogle Scholar
  87. 87.
    Wu, C. C., Y. S. Li, J. H. Haga, R. Kaunas, J. J. Chiu, F. C. Su, S. Usami, and S. Chien. Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc. Natl. Acad. Sci. USA 104:1254–1259, 2007.PubMedCrossRefGoogle Scholar
  88. 88.
    Xia, N., C. K. Thodeti, T. P. Hunt, Q. Xu, M. Ho, G. M. Whitesides, R. Westervelt, and D. E. Ingber. Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. FASEB J. 22:1649–1659, 2008.PubMedCrossRefGoogle Scholar
  89. 89.
    Xu, T., J. Rohozinski, W. Zhao, E. C. Moorefield, A. Atala, and J. J. Yoo. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. A 15:95–101, 2009.CrossRefGoogle Scholar
  90. 90.
    Xu, F., Y. Sun, Y. Chen, Y. Sun, R. Li, C. Liu, C. Zhang, R. Wang, and Y. Zhang. Endothelial cell apoptosis is responsible for the formation of coronary thrombotic atherosclerotic plaques. Tohoku J. Exp. Med. 218:25–33, 2009.PubMedCrossRefGoogle Scholar
  91. 91.
    Yoshimoto, K., M. Ichino, and Y. Nagasaki. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Lab Chip 9:1286–1289, 2009.PubMedCrossRefGoogle Scholar
  92. 92.
    Yung, Y. C., J. Chae, M. J. Buehler, C. P. Hunter, and D. J. Mooney. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc. Natl. Acad. Sci. USA 106:15279–15284, 2009.PubMedCrossRefGoogle Scholar
  93. 93.
    Zinchenko, Y. S., C. R. Culberson, and R. N. Coger. Contribution of non-parenchymal cells to the performance of micropatterned hepatocytes. Tissue Eng. 12:2241–2251, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringOregon Health & Science UniversityPortlandUSA

Personalised recommendations