Skip to main content
Log in

Experimental Studies and Modeling of Drug Release from a Tunable Affinity-Based Drug Delivery Platform

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An affinity-based drug delivery platform for controlling drug release is analyzed by a combination of experimental studies and mathematical modeling. This platform has the ability to form selective interactions between a therapeutic agent and host matrix that yields advantages over systems that employ nonselective methods. The incorporation of molecular interactions in drug delivery can increase the therapeutic lifetime of drug delivery implants and limit the need for multiple implants in treatment of chronic illnesses. To analyze this complex system for rational design of drug delivery implants, we developed a mechanistic mathematical model to quantify the molecular events and processes. With a β-cyclodextrin hydrogel host matrix, defined release rates were obtained using a fluorescent model drug. The key processes were the complexation between the drug and cyclodextrin and diffusion of the drug in the hydrogel. Optimal estimates of the model parameters were obtained by minimizing the difference between model simulation and experimentally measured drug release kinetics. Model simulations could predict the drug release dynamics under a wide range of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. An, Y. J., and J. A. Hubbell. Intraarterial protein delivery via intimally-adherent bilayer hydrogels. J. Control. Release 64(1–3):205–215, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Aoyagi, T., M. Ebara, K. Sakai, Y. Sakurai, and T. Okano. Novel bifunctional polymer with reactivity and temperature sensitivity. J. Biomater. Sci. Polym. Ed. 11(1):101–110, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, R. R., E. A. Silva, W. W. Yuen, and D. J. Mooney. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24(2):258–264, 2007.

    Article  PubMed  Google Scholar 

  4. Granadero, D., J. Bordello, M. J. Perez-Alvite, M. Novo, and W. Al-Soufi. Host-guest complexation studied by fluorescence correlation spectroscopy: adamantane-cyclodextrin inclusion. Int. J. Mol. Sci. 11(1):173–188, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Higuchi, T., and K. A. Connors. Phase-solubility techniques. Adv. Anal. Chem. Instr. 4:117–212, 1965.

    CAS  Google Scholar 

  6. Janoria, K. G., and A. K. Mitra. Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-monobutyrate) from PLGA microspheres. Int. J. Pharm. 338(1–2):133–141, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Kitano, S., Y. Koyama, K. Kataoka, T. Okano, and Y. Sakurai. A novel drug delivery system utilizing a glucose responsive polymer complex between poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Control. Release 19(1–3):162–170, 1992.

    Google Scholar 

  8. Klein, C. T., D. Polheim, H. Viernstein, and P. Wolschann. Predicting the free energies of complexation between cyclodextrins and guest molecules: linear versus nonlinear models. Pharm. Res. 17(3):358–365, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Kwon, G., M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Release 48(2–3):195–201, 1997.

    Article  CAS  Google Scholar 

  10. Lawtrakul, L., H. Viernstein, and P. Wolschann. Molecular dynamics simulations of beta-cyclodextrin in aqueous solution. Int. J. Pharm. 256(1–2):33–41, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Lin, C. C., and A. T. Metters. Metal-chelating affinity hydrogels for sustained protein release. J. Biomed. Mater. Res. A 83(4):954–964, 2007.

    PubMed  Google Scholar 

  12. Matsumoto, A., R. Yoshida, and K. Kataoka. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5(3):1038–1045, 2004.

    Article  PubMed  CAS  Google Scholar 

  13. Mislovicova, D., G. Kogan, N. M. Gosselet, B. Sebille, and L. Soltes. Controlling the association of adamantyl-substituted poly{N-[tris(hydroxymethyl)methyl]acrylamide} and a beta-cyclodextrin/epichlorohydrin polymer by a small drug molecule—naproxen. Chem. Biodivers. 4(1):52–57, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Nakayama, M., T. Okano, T. Miyazaki, F. Kohori, K. Sakai, and M. Yokoyama. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 115(1):46–56, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Oh, K. S., J. S. Oh, H. S. Choi, and Y. C. Bae. Effect of cross-linking density on swelling behavior of NIPA gel particles. Macromolecules 31(21):7328–7335, 1998.

    Article  CAS  Google Scholar 

  16. Park, H. Y., I. H. Song, J. H. Kim, and W. S. Kim. Preparation of thermally denatured albumin gel and its pH-sensitive swelling. Int. J. Pharm. 175(2):231–236, 1998.

    Article  CAS  Google Scholar 

  17. Potineni, A., D. M. Lynn, R. Langer, and M. M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release 86(2–3):223–234, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. Prakasvudhisarn, C., P. Wolschann, and L. Lawtrakul. Predicting complexation thermodynamic parameters of beta-cyclodextrin with chiral guests by using swarm intelligence and support vector machines. Int. J. Mol. Sci. 10(5):2107–2121, 2009.

    Article  PubMed  CAS  Google Scholar 

  19. Rekharsky, M. V., and Y. Inoue. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98(5):1875–1918, 1998.

    Article  PubMed  CAS  Google Scholar 

  20. Ryou, S. M., S. Kim, H. H. Jang, J. H. Kim, J. H. Yeom, M. S. Eom, J. Bae, M. S. Han, and K. Lee. Delivery of shRNA using gold nanoparticle-DNA oligonucleotide conjugates as a universal carrier. Biochem. Biophys. Res. Commun. 398(3):542–546, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Sakiyama-Elbert, S. E., and J. A. Hubbell. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Control. Release 65(3):389–402, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Thatiparti, T. R., A. J. Shoffstall, and H. A. von Recum. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials 31(8):2335–2347, 2010.

    Article  PubMed  CAS  Google Scholar 

  23. Thatiparti, T. R., and H. A. von Recum. Cyclodextrin complexation for affinity-based antibiotic delivery. Macromol. Biosci. 10(1):82–90, 2010.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, F. J., G. M. Saidel, and J. M. Gao. A mechanistic model of controlled drug release from polymer millirods: effects of excipients and complex binding. J. Control. Release 119(1):111–120, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, N. X., and H. A. von Recum. Affinity-based drug delivery. Macromol. Biosci. 11(3):321–332, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Yang, Y. Y., T. S. Chung, X. L. Bai, and W. K. Chan. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem. Eng. Sci. 55(12):2223–2236, 2000.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the Training Program in Cancer Pharmacology, NIH 1R25CA148052-01 (AF), and the NSF Award for CAREER: Research and Educational Program in Affinity-Based Drug Delivery (CBET-0954489). This report is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst A. von Recum.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

Appendix

Appendix

Method of Lines

We can discretize the derivatives with respect to z* starting with

$$ \Updelta = \frac{1}{N},\;z_{i}^{*} = i\Updelta \quad (i = 0,1,2, \ldots ,N) $$

Discretized first derivatives are either forward or backward differences; discretized second derivatives are central differences. The discretized governing equations are

$$ \frac{{dC_{{{\text{L}},i}}^{*} }}{d\tau } = P_{2} \frac{{C_{{{\text{L}},i + 1}}^{*} - 2C_{{{\text{L}},i}}^{*} + C_{{{\text{L}},i - 1}}^{*} }}{{\Updelta^{2} }} - R_{{{\text{b}},i}}^{*} \quad (i = 1,2, \ldots ,N - 1) $$
(6)
$$ \frac{{dC_{{{\text{L}} \cdot {\text{C}},i}}^{*} }}{d\tau } = R_{{{\text{b}},i}}^{*} \quad (i = 1,2, \ldots ,N - 1) $$
(7)

where \( R_{{{\text{b}},i}}^{*} = P_{1} C_{{{\text{L}},i}}^{*} \left( {P_{3} - C_{{{\text{L}} \cdot {\text{C}},i}}^{*} } \right) - C_{{{\text{L}} \cdot {\text{C}},i}}^{*} \)

$$ \frac{{dM_{\text{R}}^{*} }}{d\tau } = RR^{*} = - \frac{1}{2}P_{2} \frac{{C_{{{\text{L}},N}}^{*} - C_{{{\text{L}},N - 1}}^{*} }}{\Updelta } $$
(8)

The discretized initial conditions are

$$ \tau = 0{:}\;C_{\text{L}}^{*} = \frac{{C_{\text{L}}^{\text{eq}} }}{{C_{0} }};\;C_{{{\text{L}} \cdot {\text{C}}}}^{*} = \frac{{C_{{{\text{L}} \cdot {\text{C}}}}^{\text{eq}} }}{{C_{0} }};\;M_{\text{R}}^{*} = 0; $$

The discretized boundary conditions are

$$ i = 0{:}\;\frac{{\partial C_{{{\text{L}},0}}^{*} }}{{\partial z^{*} }} = 0 \Rightarrow \, C_{{{\text{L}},1}}^{*} = C_{{{\text{L}},0}}^{*} $$
$$ i = N{:}\;C_{{{\text{L}},N}}^{*} = 0 $$

These are incorporated into the equations for i = 1 and i = N − 1, respectively:

$$ \begin{aligned} i & = 1{:}\;\frac{{\partial C_{{{\text{L}},1}}^{*} }}{{\partial z^{*} }} = P_{2} \frac{{C_{{{\text{L}},2}}^{*} - C_{{{\text{L}},1}}^{*} }}{{\Updelta^{2} }} - R_{{{\text{b}},1}}^{*} \\ i & = N - 1{:}\;\frac{{\partial C_{{{\text{L,}}N - 1}}^{*} }}{{\partial z^{*} }} = P_{2} \frac{{ - 2C_{{{\text{L}},N - 1}}^{*} + C_{{{\text{L}},N - 2}}^{*} }}{{\Updelta^{2} }} - R_{{{\text{b}},N - 1}}^{*} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, A.S., Thatiparti, T.R., Saidel, G.M. et al. Experimental Studies and Modeling of Drug Release from a Tunable Affinity-Based Drug Delivery Platform. Ann Biomed Eng 39, 2466–2475 (2011). https://doi.org/10.1007/s10439-011-0336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0336-z

Keywords

Navigation