Advertisement

Local Strain Distribution in Real Three-Dimensional Alveolar Geometries

  • S. M. K. RauschEmail author
  • D. Haberthür
  • M. Stampanoni
  • J. C. Schittny
  • W. A. WallEmail author
Article

Abstract

Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.

Keywords

Alveoli Finite-element method Local strains Synchrotron-based X-ray tomographic microscopy 

Notes

Acknowledgments

Support by the German Science Foundation/Deutsche Forschungsgemeinschaft DFG and the TUM Graduate School is gratefully acknowledged. We also gratefully acknowledge the help of Christian Martin and Stefan Uhlig for providing us with the PCLSs.

References

  1. 1.
    Brewer, K., H. Sakai, A. M. Alencar, A. Majumdar, S. P. Arold, K. R. Lutchen, E. P. Ingenito, and B. Suki. Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment. J. Appl. Physiol. 95(5):1926–1936, 2003.PubMedGoogle Scholar
  2. 2.
    Cavalcante, F. S., S. Ito, H. Sakai, A. M. Alencar, M. P. Almeida, I. S. Andrade, A. Majumdar, E. P. Ingenito, and B. Suki. Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J. Appl. Physiol. 98(2):672–679, 2005.PubMedCrossRefGoogle Scholar
  3. 3.
    Chandel, N. S., and J. I. Sznajder. Stretching the lung and programmed cell death. Am. J. Physiol. Lung Cell Mol. Physiol. 279(6):1003–1004, 2000.Google Scholar
  4. 4.
    Comerford, A., C. Förster, and W. A. Wall. Structured tree impedance outflow boundary conditions for 3D lung simulations. J. Biomech. Eng. 132(8):081002, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Copland, I. B., and M. Post. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J. Cell. Physiol. 210(1):133–143, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Dassow, C., L. Wiechert, C. Martin, S. Schumann, G. Müller-Newen, O. Pack, J. Guttmann, W. A. Wall, and S. Uhlig. Biaxial distension of precision-cut lung slices. J. Appl. Physiol. 108:713–721, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Denny, E., and R. C. Schroter. A model of non-uniform lung parenchyma distortion. J. Biomech. 39(4):652–663, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    DiRocco, J. D., L. A. Pavone, D. E. Carney, Ch. J. Lutz, L. A. Gatto, S. K. Landas, and G. F. Nieman. Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med 32(1):140–148, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Dos Santos, C. C., and A. S. Slutsky. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J. Appl. Physiol. 89(4):1645–1655, 2000.PubMedGoogle Scholar
  10. 10.
    Dos Santos, C. C., and A. S. Slutsky. The contribution of biophysical lung injury to the development of biotrauma. Annu. Rev. Physiol. 68:585–618, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Gee, M. W., C. R. Dohrmann, S. W. Key, and W. A. Wall. A uniform nodal strain tetrahedron with isochoric stabilization. Int. J. Numer. Methods Eng. 78(4):429–443, 2009.CrossRefGoogle Scholar
  12. 12.
    Gefen, A., D. Elad, and R. J. Shiner. Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs. J. Biomech. 32(9):891–897, 1999.PubMedCrossRefGoogle Scholar
  13. 13.
    Hintermüller, C., F. Marone, A. Isenegger, and M. Stampanoni. Image processing pipeline for synchrotron-radiation-based tomographic microscopy. J. Synchrotron Radiat. 17(4):550–559, 2010.PubMedCrossRefGoogle Scholar
  14. 14.
    Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. New York: Wiley, 2001.Google Scholar
  15. 15.
    Karakaplan, A. D., M. P. Bieniek, and R. Skalak. A mathematical model of lung parenchyma. J. Biomech. Eng. 102(2):124–136, 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    Kowe, R., R. C. Schroter, F. L. Matthews, and D. Hitchings. Analysis of elastic and surface tension effects in the lung alveolus using finite element methods. J. Biomech. 19(7):541–549, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Maksym, G. N., J. J. Fredberg, and J. H. T. Bates. Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J. Appl. Physiol. 85:1223–1229, 1998.PubMedGoogle Scholar
  18. 18.
    Martin, C., S. Uhlig, and V. Ullrich. Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur. Respir. J. 9(12):2479–2487, 1996.PubMedCrossRefGoogle Scholar
  19. 19.
    Ning, Q., and X. Wang. Response of alveolar type ii epithelial cells to mechanical stretch and lipopolysaccharide. Respiration 74(5):579–585, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Perlman, C. E., and J. Bhattacharya. Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol. 103:1037–1044, 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    Rausch, S. M. K., C. Martin, P. B. Bornemann, S. Uhlig, and W. A. Wall. Material model of lung parenchyma based on living precision-cut lung slice testing. J. Mech. Behav. Biomed. 4:583–592, 2011.CrossRefGoogle Scholar
  22. 22.
    Schittny, J. C., and P. H. Burri. Development and Growth of the Lung. Fishman’s Pulmonary Diseases and Disorders. New-York: McGraw-Hill, 2008.Google Scholar
  23. 23.
    Schittny, J. C., S. I. Mund, and M. Stampanoni. Evidence and structural mechanism for late lung alveolarization. Am. J. Physiol. Lung Cell Mol. Physiol. 294(2):246–254, 2008.CrossRefGoogle Scholar
  24. 24.
    Sobin, S. S., Y. C. Fung, and H. M. Tremer. Collagen and elastin fibers in human pulmonary alveolar walls. J. Appl. Physiol. 64(4):1659–1675, 1988.PubMedGoogle Scholar
  25. 25.
    Stampanoni, M., A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela. Trends in synchrotron-based tomographic imaging: the SLS experience. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2006.Google Scholar
  26. 26.
    Suki, B., and J. H. T. Bates. Extracellular matrix mechanics in lung parenchymal diseases. Respir. Physiol. Neurobiol. 163:33–43, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342(18):1301–1308, 2000.CrossRefGoogle Scholar
  28. 28.
    Toshima, M., Y. Ohtani, and O. Ohtani. Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch. Histol. Cytol. 67(1):31–40, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Tschanz, S. A., A. N. Makanya, B. Haenni, and P. H. Burri Effects of neonatal high-dose short-term glucocorticoid treatment on the lung: a morphologic and morphometric study in the rat. Pediatr. Res. 53(1):72–80, 2003.PubMedGoogle Scholar
  30. 30.
    Vlahakis, N. E., M. A. Schroeder, A. H. Limper, and R. D. Hubmayr. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am. J. Physiol. 277(1):167–173, 1999.Google Scholar
  31. 31.
    Wall, W. A., and M. Gee. Baci: A Parallel Multiphysics Simulation Environment. Technical Report, Institute for Computational Mechanics, TUM, 2010.Google Scholar
  32. 32.
    Wall, W. A., L. Wiechert, A. Comerford, and S. Rausch. Towards a comprehensive computational model for the respiratory system. Int. J. Numer. Methods Biomed. Eng. 26(7):807–827, 2010.Google Scholar
  33. 33.
    Wiechert, L., and W. A. Wall. A nested dynamic multi-scale approach for 3D problems accounting for micro-scale multi-physics. Comput. Methods Appl. Mech. Eng. 199(21–22):1342–1351, 2010.CrossRefGoogle Scholar
  34. 34.
    Wiechert, L., R. Metzke, and W. A. Wall. Modeling the mechanical behavior of lung tissue at the micro-level. J. Eng. Mech. 135(5):434–438, 2009.CrossRefGoogle Scholar
  35. 35.
    Wilson, T. A., and H. Bachofen. A model for mechanical structure of the alveolar duct. J. Appl. Physiol. 52:1064–1070, 1982.PubMedGoogle Scholar
  36. 36.
    Yuan, H., E. P. Ingenito, and B. Suki. Dynamic properties of lung parenchyma: mechanical contributions of fiber network and interstitial cells. J. Appl. Physiol. 83(5):1420–1431, 1997 (discussion 1418–9).PubMedGoogle Scholar
  37. 37.
    Yuan, H., S. Kononov, F. S. Cavalcante, K. R. Lutchen, E. P. Ingenito, and B. Suki. Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J. Appl. Physiol. 89(1):3–14, 2000.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Institute for Computational MechanicsTechnische Universität MünchenGarchingGermany
  2. 2.Institute of AnatomyUniversity of BernBernSwitzerland
  3. 3.Swiss Light SourcePaul Scherrer InstitutVillingenSwitzerland
  4. 4.Institute for Biomedical Engineering, University and ETH ZürichZurichSwitzerland

Personalised recommendations