Annals of Biomedical Engineering

, Volume 39, Issue 8, pp 2213–2222

Angiogenesis-Associated Crosstalk Between Collagens, CXC Chemokines, and Thrombospondin Domain-Containing Proteins

  • Corban G. Rivera
  • Joel S. Bader
  • Aleksander S. Popel
Article

Abstract

Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel [Proc. Natl. Acad. Sci. USA 105(37):13775–13780, 2008] used a bioinformatics approach to identify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain of the proteins they were derived from. The families included type IV collagen fibrils, CXC chemokine ligands, and type I thrombospondin domain-containing proteins. The relationships between these families have received relatively little attention. To investigate these relationships, we approached the problem by placing the families of proteins in the context of the human interactome including >120,000 physical interactions among proteins, genes, and transcripts. We built on a graph theoretic approach to identify proteins that may represent conduits of crosstalk between protein families. We validated these findings by statistical analysis and analysis of a time series gene expression data set taken during angiogenesis. We identified six proteins at the center of the angiogenesis-associated network including three syndecans, MMP9, CD44, and versican. These findings shed light on the complex signaling networks that govern angiogenesis phenomena.

Keywords

CXC chemokine Type IV collagen Thrombospondin-1 Angiogenesis Crosstalk Interactome Syndecan 

References

  1. 1.
    Albig, A. R., J. R. Neil, and W. P. Schiemann. Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res. 66(5):2621–2629, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashburner, M., C. A. Ball, J. A. Blake, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1):25–29, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Bauer, S., S. Grossmann, M. Vingron, et al. Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14):1650–1651, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Breitkreutz, B. J., C. Stark, T. Reguly, et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. 36(Database issue):D637–D640, 2008.PubMedGoogle Scholar
  5. 5.
    Cano Mdel, V., E. D. Karagiannis, M. Soliman, et al. A peptide derived from type 1 thrombospondin repeat-containing protein WISP-1 inhibits corneal and choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 50(8):3840–3845, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Cao, G., R. C. Savani, M. Fehrenbach, et al. Involvement of endothelial CD44 during in vivo angiogenesis. Am. J. Pathol. 169(1):325–336, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21):1182–1186, 1971.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6(4):273–286, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Gioia, M., S. Monaco, P. E. Van Den Steen, et al. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol. 386(2):419–434, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Jayapandian, M., A. Chapman, V. G. Tarcea, et al. Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucleic Acids Res. 35(Database issue):D566–D571, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Karagiannis, E. D., and A. S. Popel. A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J. Biol. Chem. 279(37):39105–39114, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Karagiannis, E. D., and A. S. Popel. Anti-angiogenic peptides identified in thrombospondin type I domains. Biochem. Biophys. Res. Commun. 359(1):63–69, 2007.PubMedCrossRefGoogle Scholar
  13. 13.
    Karagiannis, E. D., and A. S. Popel. Peptides derived from type I thrombospondin repeat-containing proteins of the CCN family inhibit proliferation and migration of endothelial cells. Int. J. Biochem. Cell Biol. 39(12):2314–2323, 2007.PubMedCrossRefGoogle Scholar
  14. 14.
    Karagiannis, E. D., and A. S. Popel. A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc. Natl. Acad. Sci. USA 105(37):13775–13780, 2008.PubMedCrossRefGoogle Scholar
  15. 15.
    Karagiannis, E. D., and A. S. Popel. Novel anti-angiogenic peptides derived from ELR-containing CXC chemokines. J. Cell. Biochem. 104(4):1356–1363, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Keshava Prasad, T. S., R. Goel, K. Kandasamy, et al. Human Protein Reference Database—2009 update. Nucleic Acids Res. 37(Database issue):D767–D772, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Killcoyne, S., G. W. Carter, J. Smith, et al. Cytoscape: a community-based framework for network modeling. Methods Mol. Biol. 563:219–239, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Koskimaki, J. E., E. D. Karagiannis, E. V. Rosca, et al. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11(12):1285–1291, 2009.PubMedGoogle Scholar
  19. 19.
    Koskimaki, J. E., E. D. Karagiannis, B. C. Tang, et al. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer 10:29, 2010.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuo, H. J., C. L. Maslen, D. R. Keene, et al. Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J. Biol. Chem. 272(42):26522–26529, 1997.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, Y., P. Agarwal, and D. Rajagopalan. A global pathway crosstalk network. Bioinformatics 24(12):1442–1447, 2008.PubMedCrossRefGoogle Scholar
  22. 22.
    McCarty, M. F. Toward prevention of Alzheimers disease—potential nutraceutical strategies for suppressing the production of amyloid beta peptides. Med. Hypotheses 67(4):682–697, 2006.PubMedCrossRefGoogle Scholar
  23. 23.
    Mellberg, S., A. Dimberg, F. Bahram, et al. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 23(5):1490–1502, 2009.PubMedCrossRefGoogle Scholar
  24. 24.
    Mira, E., R. A. Lacalle, J. M. Buesa, et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J. Cell Sci. 117(Pt 9):1847–1857, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Nagase, H., and J. F. Woessner, Jr. Matrix metalloproteinases. J. Biol. Chem. 274(31):21491–21494, 1999.PubMedCrossRefGoogle Scholar
  26. 26.
    Natarajan, M., K. M. Lin, R. C. Hsueh, et al. A global analysis of cross-talk in a mammalian cellular signalling network. Nat. Cell Biol. 8(6):571–580, 2006.PubMedCrossRefGoogle Scholar
  27. 27.
    Opdenakker, G., P. E. Van den Steen, B. Dubois, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J. Leukoc. Biol. 69(6):851–859, 2001.PubMedGoogle Scholar
  28. 28.
    Ruoslahti, E. Fibronectin. J. Oral Pathol. 10(1):3–13, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Schonherr, E., C. Sunderkotter, L. Schaefer, et al. Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J. Vasc. Res. 41(6):499–508, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Silva, R., G. D’Amico, K. M. Hodivala-Dilke, et al. Integrins: the keys to unlocking angiogenesis. Arterioscler. Thromb. Vasc. Biol. 28(10):1703–1713, 2008.PubMedCrossRefGoogle Scholar
  31. 31.
    Subramanian, A., P. Tamayo, V. K. Mootha, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43):15545–15550, 2005.PubMedCrossRefGoogle Scholar
  32. 32.
    Suo, Z., J. Humphrey, A. Kundtz, et al. Soluble Alzheimers beta-amyloid constricts the cerebral vasculature in vivo. Neurosci. Lett. 257(2):77–80, 1998.PubMedCrossRefGoogle Scholar
  33. 33.
    Tarcea, V. G., T. Weymouth, A. Ade, et al. Michigan molecular interactions r2: from interacting proteins to pathways. Nucleic Acids Res. 37(Database issue):D642–D646, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Tkachenko, E., J. M. Rhodes, and M. Simons. Syndecans: new kids on the signaling block. Circ. Res. 96(5):488–500, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Tony, J. C. Alzheimer’s disease and angiogenesis. Lancet 361(9365):1300, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsuda, K., and W. S. Noble. Learning kernels from biological networks by maximizing entropy. Bioinformatics 20(Suppl. 1):326–333, 2004.CrossRefGoogle Scholar
  37. 37.
    Vastrik, I., P. D’Eustachio, E. Schmidt, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 8(3):R39, 2007.PubMedCrossRefGoogle Scholar
  38. 38.
    Zielinski, R., P. F. Przytycki, J. Zheng, et al. The crosstalk between EGF, IGF, and Insulin cell signaling pathways—computational and experimental analysis. BMC Syst. Biol. 3:88, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Corban G. Rivera
    • 1
  • Joel S. Bader
    • 1
  • Aleksander S. Popel
    • 1
  1. 1.Department of Biomedical Engineering, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations