Annals of Biomedical Engineering

, Volume 39, Issue 8, pp 2174–2185

Design and Validation of a Novel Bioreactor to Subject Aortic Valve Leaflets to Side-Specific Shear Stress

  • Ling Sun
  • Nalini M. Rajamannan
  • Philippe Sucosky
Article

Abstract

Hemodynamic stresses are presumed to play an important role in the development of calcific aortic valve disease (CAVD). The elucidation of the shear stress mechanisms involved in the pathogenesis of CAVD has been hampered by the complexity of the native unsteady and side-specific valvular flow environment. To address this gap, this article describes the design and validation of a novel device to expose leaflet samples to time-dependent side-specific shear stress. The device built on a double cone-and-plate geometry was dimensioned based on our previous single-sided shear stress device that minimizes secondary flow effects inherent to this geometry. A fluid–structure interaction (FSI) model was designed to predict the actual shear stress produced on a tissue sample mounted in the new device. Staining was performed on porcine leaflets conditioned in the new bioreactor to assess endothelial integrity and cellular apoptosis. The FSI results demonstrated good agreement between the target (native) and the actual side-specific shear stress produced on a tissue sample. No significant difference in endothelial integrity and cellular apoptosis was detected between samples conditioned for 96 h and fresh controls. This new device will enable the investigation of valvular response to normal and pathologic hemodynamics and the potential mechano-etiology of CAVD.

Key terms

Mechanobiology Signal transduction Hemodynamics Flow Remodeling Inflammation 

References

  1. 1.
    Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Beppu, S., S. Suzuki, H. Matsuda, F. Ohmori, S. Nagata, and K. Miyatake. Rapidity of progression of aortic stenosis in patients with congenital bicuspid aortic valves. Am. J. Cardiol. 71:322–327, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Blackman, B. R., K. A. Barbee, and L. E. Thibault. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng. 28:363–372, 2000.PubMedCrossRefGoogle Scholar
  4. 4.
    Blackman, B. R., G. Garcia-Cardena, and M. A. Gimbrone, Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124:397–407, 2002.Google Scholar
  5. 5.
    Breen, L. T., P. E. McHugh, B. A. McCormack, G. Muir, N. J. Quinlan, K. B. Heraty, and B. P. Murphy. Development of a novel bioreactor to apply shear stress and tensile strain simultaneously to cell monolayers. Rev. Sci. Instrum. 77:104301, 2006.CrossRefGoogle Scholar
  6. 6.
    Brewer, R. J., R. M. Mentzer, Jr., J. D. Deck, R. C. Ritter, J. S. Trefil, and S. P. Nolan. An in vivo study of the dimensional changes of the aortic valve leaflets during the cardiac cycle. J. Thorac. Cardiovasc. Surg. 74:645–650, 1977.PubMedGoogle Scholar
  7. 7.
    Buschmann, M. H., P. Dieterich, and N. A. Adams. Analysis of flow in cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol. Bioeng. 89:493–502, 2004.CrossRefGoogle Scholar
  8. 8.
    Bussolari, S. R., C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Apparatus for subjecting living cells to fluid shear stress. Rev. Sci. Instrum. 53:1851–1854, 1982.Google Scholar
  9. 9.
    Butcher, J. T., A. M. Penrod, A. J. Garcia, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24:1429–1434, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Butcher, J. T., C. A. Simmons, and J. N. Warnock. Mechanobiology of the aortic heart valve. J. Heart Valve Dis. 17:62–73, 2008.PubMedGoogle Scholar
  11. 11.
    Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33:521–530, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Chambers, J. B. Aortic stenosis. Eur. J. Echocardiogr. 10:i11–i19, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Chung, C. A., M. R. Tzou, and R. W. Ho. Oscillatory flow in a cone-and-plate bioreactor. J. Biomech. Eng. 127:601–610, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Dai, G., S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. 101:14871–14876, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    De Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A two-dimensional fluid-structure interaction model of the aortic valve. J. Biomech. 33:1079–1088, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Deck, J. D. Endothelial cell orientation on aortic valve leaflets. Cardiovasc. Res. 20:760–767, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Dewey, C. F., Jr., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.Google Scholar
  20. 20.
    Donea, J., S. Guiliani, and J. P. Halleux. An arbitrary Lagrangian-Eulerian finite-element method for transient dynamic fluid structure interactions. Comput. Methods Appl. Mech. Eng. 33:689–723, 1982.CrossRefGoogle Scholar
  21. 21.
    Fewell, M. E., and J. D. Hellums. The secondary flow of Newtonian fluids in cone-and-plate viscometers. Trans. Soc. Rheol. 21:535–565, 1977.CrossRefGoogle Scholar
  22. 22.
    Ge, L., and F. Sotiropoulos. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J. Biomech. Eng. 132:014505, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Go, Y. M., R. P. Patel, M. C. Maland, H. Park, J. S. Beckman, V. M. Darley-Usmar, and H. Jo. Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am. J. Physiol. 277:H1647–H1653, 1999.PubMedGoogle Scholar
  24. 24.
    Haj-Ali, R., L. P. Dasi, H. S. Kim, J. Choi, H. W. Leo, and A. P. Yoganathan. Structural simulations of prosthetic tri-leaflet aortic heart valves. J. Biomech. 41:1510–1519, 2008.PubMedCrossRefGoogle Scholar
  25. 25.
    Hajra, L., A. I. Evans, M. Chen, S. J. Hyduk, T. Collins, and M. I. Cybulsky. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl Acad. Sci. USA 97:9052–9057, 2000.PubMedCrossRefGoogle Scholar
  26. 26.
    Jo, H., H. Song, and A. Mowbray. Role of NADPH oxidases in disturbed flow- and BMP4- induced inflammation and atherosclerosis. Antioxidants Redox Signal. 8:1609–1619, 2006.CrossRefGoogle Scholar
  27. 27.
    Kadem, L., J. G. Dumesnil, R. Rieu, L. G. Durand, D. Garcia, and P. Pibarot. Impact of systemic hypertension on the assessment of aortic stenosis. Heart 91:354–361, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaden, J. J., and D. Haghi. Hypertension in aortic valve stenosis—a Trojan horse. Eur. Heart J. 29:1934–1935, 2008.PubMedCrossRefGoogle Scholar
  29. 29.
    Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.PubMedCrossRefGoogle Scholar
  30. 30.
    Ku, C. H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, M. H. Yacoub, and A. H. Chester. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71:548–556, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Leo, H. L., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34:936–952, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Leo, H. L., H. Simon, J. Carberry, S. C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33:429–443, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34:1417–1427, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Mascherbauer, J., C. Fuchs, M. Stoiber, H. Schima, E. Pernicka, G. Maurer, and H. Baumgartner. Systemic pressure does not directly affect pressure gradient and valve area estimates in aortic stenosis in vitro. Eur. Heart J. 29:2049–2057, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Merryman, W. D. Mechano-potential etiologies of aortic valve disease. J. Biomech. 43:87–92, 2010.CrossRefGoogle Scholar
  36. 36.
    Mooney, M., and R. H. Ewart. The conicylindrical viscometer. Physics 5:350–354; 350, 1934.Google Scholar
  37. 37.
    Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Otto, C. M. Valvular aortic stenosis: disease severity and timing of intervention. J. Am. Coll. Cardiol. 47:2141–2151, 2006.PubMedCrossRefGoogle Scholar
  39. 39.
    Otto, C. M., J. Kuusisto, and D. D. Reichenbach. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90:844–853, 1994.PubMedGoogle Scholar
  40. 40.
    Pelech, I., and A. H. Shapiro. Flexible disk rotating on a gas film next to a wall. J. Appl. Mech. 31:577–584, 1964.Google Scholar
  41. 41.
    Platt, M. O., Y. Xing, H. Jo, and A. P. Yoganathan. Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J. Heart Valve Dis. 15:622–629, 2006.PubMedGoogle Scholar
  42. 42.
    Rabkin, S. W. The association of hypertension and aortic valve sclerosis. Blood Press. 14:264–272, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Rajamannan, N. M., M. Subramaniam, D. Rickard, S. R. Stock, J. Donovan, M. Springett, T. Orszulak, D. A. Fullerton, A. J. Tajik, R. O. Bonow, and T. Spelsberg. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184, 2003.PubMedCrossRefGoogle Scholar
  44. 44.
    Sdougos, H. P., S. R. Bussolari, and C. F. Dewey. Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138:379–404, 1984.CrossRefGoogle Scholar
  45. 45.
    Sotiropoulos, F., and I. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47:245–256, 2009.PubMedCrossRefGoogle Scholar
  46. 46.
    Strickberger, S. A., S. P. Schulman, and G. M. Hutchins. Association of Paget’s disease of bone with calcific aortic valve disease. Am. J. Med. 82:953–956, 1987.PubMedCrossRefGoogle Scholar
  47. 47.
    Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.PubMedCrossRefGoogle Scholar
  48. 48.
    Sucosky, P., M. Padala, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J. Biomech. Eng. 130:035001-1–035001-8, 2008.Google Scholar
  49. 49.
    Thubrikar, M., S. P. Nolan, L. P. Bosher, and J. D. Deck. The cyclic changes and structure of the base of the aortic valve. Am. Heart J. 99:217–224, 1980.PubMedCrossRefGoogle Scholar
  50. 50.
    Thubrikar, M., W. C. Piepgrass, L. P. Bosher, and S. P. Nolan. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 47:792–800, 1980.PubMedGoogle Scholar
  51. 51.
    Weinberg, E. J., and M. R. Kaazempur Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.PubMedCrossRefGoogle Scholar
  52. 52.
    Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27:572–579, 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    Weston, M. W., and A. P. Yoganathan. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann. Biomed. Eng. 29:752–763, 2001.PubMedCrossRefGoogle Scholar
  54. 54.
    Xing, Y., J. N. Warnock, Z. He, S. L. Hilbert, and A. P. Yoganathan. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude- and frequency-dependent manner. Ann. Biomed. Eng. 32:1461–1470, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Ling Sun
    • 1
  • Nalini M. Rajamannan
    • 2
  • Philippe Sucosky
    • 1
  1. 1.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA
  2. 2.Division of Cardiology and Department of MedicineNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations