Annals of Biomedical Engineering

, Volume 39, Issue 7, pp 1994–2009 | Cite as

Wavelength Selection Method with Standard Deviation: Application to Pulse Oximetry

  • Camille Vazquez-Jaccaud
  • Gonzalo Paez
  • Marija Strojnik
Article

Abstract

Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.

Keywords

Standard deviation Pulse oximetry Spectroscopy Medical optics Human functions as temporal noise Near-IR 

Notes

Acknowledgments

Authors wish to acknowledge the financial support of CONACYT through the project: “Applications of infrared interferometry for biomedical tomography” (CONACYT 2007-I0003-60450). C. Vazquez-Jaccaud was a recipient of the CONACYT fellowship.

References

  1. 1.
    Aldrich, T. K., M. Moosikasuwan, S. D. Shah, and K. S. Deshponde. Length-normalized pulse photoplethysmography: a noninvasive method to measure blood hemoglobin. Ann. Biomed. Eng. 30:1291–1298, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Aoyagi, T. Pulse oximetry its invention, theory, and future. J. Anesth. 17(4):259–266, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Aoyagi, T., M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka. Multi-wavelength pulse oximetry: theory for the future. Anesth. Analg. 105(6 Suppl):S53–S58, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Aoyagi, T., and K. Miyasaka. Pulse oximetry: its invention, contribution to medicine and future tasks. Anesth. Analg. 94:S1–S3, 2002.PubMedGoogle Scholar
  5. 5.
    Baker, C. Pulse oximeter with parallel saturation calculation modules. United State Patent, 20050124871 (2005).Google Scholar
  6. 6.
    Barker, S. J., J. Curry, D. Redford, and S. Morgan. Measurements or carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study. Anesthesiology 105:892–897, 2007.CrossRefGoogle Scholar
  7. 7.
    Cannesson, M., and P. Talke. Recent advances in pulse oximetry. F1000 Med. Rep. 1:66, 2009.PubMedGoogle Scholar
  8. 8.
    Choi, J. H., M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton. Noninvasive determination of the optical properties of adult brain near-infrared spectroscopy approach. J. Biomed. Opt. 9(1):221–229, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Culver, J. P., A. M. Siegel, J. J. Stott, and D. A. Boas. Volumetric diffuse optical tomography of brain activity. Opt. Lett. 28(21):2061–2063, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Cysewska-Sobusiak, A. One-dimensional representation of light-tissue interaction for application in noninvasive oximetry. Opt. Eng. 36(4):1225–1233, 1997.CrossRefGoogle Scholar
  11. 11.
    Desebbe, O., and M. Cannesson. Using ventilation induced plethysmographic variations to optimize patient fluid status. Curr. Opin. Anaesthesiol. 21:772–778, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    Fantini, S., and M. A. Franceschini. Frequency-domain techniques for tissue spectroscopy and imaging. In: Handbook of Optical Biomedical Diagnostics, edited by V. V. Tuchin. Bellingham: SPIE Press, 2002.Google Scholar
  13. 13.
    Gratton, E., V. Toronov, U. Wolf, M. Wolf, and A. Webb. Measurement of brain activity by near-infrared light. J. Biomed. Opt. 10(1):8–13, 2005.CrossRefGoogle Scholar
  14. 14.
    Hayes, M. J., and P. R. Smith. A new method for pulse oximetry possessing inherent insensitivity to artifact. IEEE Trans. Biomed. Eng. 48:452–461, 2001.PubMedCrossRefGoogle Scholar
  15. 15.
    Humphreys, K., T. Ward, and C. Markham. Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry. Rev. Sci. Instrum. 78(4):1–6, 2007.CrossRefGoogle Scholar
  16. 16.
    Ignjatovic, N., M. Vasiljevic, D. Milic, J. Stefanovic, M. Stojanovic, A. Karanikolic, A. Zlatic, G. Djordjevic, S. Zivic, L. Jeremic, I. Djordjevic, and R. Jankovic. Diagnostic importance of pulse oximetry in the determination of the stage of chronic arterial insufficiency of lower extremities. Srp. Arh. Celok. Lek. 138(5–6):300–304, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurth, C. D., and W. Thayer. A multiwavelength frequency-domain near-infrared cerebral oximeter. Phys. Med. Biol. 44(3):727–740, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, H., D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance. Determination of optical properties and blood oxygenation in tissue continuous NIR light. Phys. Med. Biol. 40(11):1983–1993, 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Silva, S. M., M. L. Dotor-Castilla, and J. P. Silveira-Martin. Near-infrared transmittance pulse oximetry with laser diodes. J. Biomed. Opt. 8(3):525–533, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Mannheimer, P. D., J. R. Casciani, M. E. Fein, and S. L. Nierlich. Wavelength selection for low saturation pulse oximetry. IEEE Trans. Biomed. Eng. 44(3):148–158, 1997.PubMedCrossRefGoogle Scholar
  21. 21.
    Mobley, J., and T. Vo-Dinh. Light-tissue inter-actions. In: Biomedical Photonics Handbook, edited by T. Vo-Dinh. New York: CRC Press, 2003.Google Scholar
  22. 22.
    Nelson, L. A., J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth. Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia. J. Biomed. Opt. 11(6):1–8, 2006.CrossRefGoogle Scholar
  23. 23.
    Nitzan, M., A. Babchenko, B. Khanokh, and H. Taitelbaum. Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy. J. Biomed. Opt. 5(2):155–162, 2000.PubMedCrossRefGoogle Scholar
  24. 24.
    Nitzan, M., and E. Shlomo. Three-wavelength technique for the measurement of oxygen saturation in arterial blood and in venous blood. J. Biomed. Opt. 14(2):1–6, 2009.CrossRefGoogle Scholar
  25. 25.
    Niwayama, M., L. Lin, J. Shao, N. Kudo, and K. Yamamoto. Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction of the influence of a subcutaneous fat layer. Rev. Sci. Instrum. 71(12):4571–4575, 2000.CrossRefGoogle Scholar
  26. 26.
    Paez G., C. Vazquez-Jaccaud, and M. Strojnik. Development of noise-immune oximetry: theory and measurement. In: Proc. SPIE 6307, 63070F, 2006.Google Scholar
  27. 27.
    Petterson, M. T., V. L. Begnoche, and J. M. Graybeal. The effect of motion on pulse oximetry and its clinical significance. Anesth. Analog. 105(6 Suppl):S78–S84, 2007.CrossRefGoogle Scholar
  28. 28.
    Phillips, J. P., R. M. Langford, S. H. Chang, K. Maney, P. A. Kyriacou, and D. P. Jones. An oesophageal pulse oximetry system utilising a fiber-optic probe. J. Phys.: Conf. Ser. 178:012021, 2009.CrossRefGoogle Scholar
  29. 29.
    Pittman, R. N. In vivo photometric analysis of hemoglobin. Ann. Biomed. Eng. 14:119–137, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Pogue, B. W., and M. S. Patterson. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 11(4):1–16, 2006.CrossRefGoogle Scholar
  31. 31.
    Rice, J. A. Mathematical Statistics and Data Analysis (2nd ed.). Pacific Grove, CA: Duxburry Press, 1995.Google Scholar
  32. 32.
    Rothmaier, M., B. Selm, S. Spichtig, D. Haensse, and M. Wolf. Photonic textiles for pulse oximetry. Opt. Express 16(17):12973–12986, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Salyer, J. W. Neonatal and pediatric pulse oximetry. Respir. Care 48(4):386–396, 2003.PubMedGoogle Scholar
  34. 34.
    Sebald, D. J. Motivation of pulse oximetry. In: Design of Pulse Oximeters, edited by J. G. Webster. Bristol: IOP Publishing, 1997.Google Scholar
  35. 35.
    Shao, J., L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto. Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy. Opt. Eng. 40(10):2293–2301, 2001.CrossRefGoogle Scholar
  36. 36.
    Shelley, K. H. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth. Analg. 105:S31–S36, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, M. H. Optimum wavelength combinations for retinal vessel oximetry. Appl. Opt. 38(1):258–267, 1999.PubMedCrossRefGoogle Scholar
  38. 38.
    Strojnik, M., and G. Paez. Radiometry. In: Handbook of Optical Engineering, edited by D. Malacara, and B. Thompson. New York: Marcel Dekker, 2001.Google Scholar
  39. 39.
    Tromberg, B. J., B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys. 35(6):2443–2451, 2008.PubMedCrossRefGoogle Scholar
  40. 40.
    Vacas-Jaques, P., G. Paez, and M. Strojnik. Pass-through photon-based biomedical transillumination. J. Biomed. Opt. 13(4):1–10, 2008.Google Scholar
  41. 41.
    Vazquez-Jaccaud, C., G. Paez, and M. Strojnik. Oximetry using a novel expression for oxygen saturation. In: AITA 2007 Proceedings, Leon, Mexico, 2008, pp. 451–457.Google Scholar
  42. 42.
    Wray, S., M. Cope, D. Delpy, J. Wyatt, and O. Reynolds. Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the non invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933:184–192, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Camille Vazquez-Jaccaud
    • 1
  • Gonzalo Paez
    • 1
  • Marija Strojnik
    • 1
  1. 1.Infrared Physics GroupCentro de Investigaciones en OpticaLeonMexico

Personalised recommendations