Annals of Biomedical Engineering

, Volume 39, Issue 7, pp 1904–1913

Mechanical, Compositional, and Structural Properties of the Post-natal Mouse Achilles Tendon

  • Heather L. Ansorge
  • Sheila Adams
  • David E. Birk
  • Louis J. Soslowsky


During post-natal development, tendons undergo a well orchestrated process whereby extensive structural and compositional changes occur in synchrony to produce a normal tissue. Conversely, during the repair response to injury, structural and compositional changes occur, but in this case, a mechanically inferior tendon is produced. As a result, the process of development has been postulated as a potential paradigm through which improved adult tissue healing may occur. In this study we measured the mechanical, compositional, and structural properties in the post-natal mouse Achilles tendon at 4, 7, 10, 14, 21, and 28 days old. Throughout post-natal development, the mechanical properties, collagen content, fibril diameter mean, and fibril diameter standard deviation increased. Biglycan expression decreased and decorin expression and fiber organization were unchanged. This study provides a new mouse model that can be used to quantitatively examine mechanical development, as well as compositional and structural changes and biological mechanisms, during post-natal tendon development. This model is advantageous due to the large number of genetically modified mice and commercially available assays that are not available in other animal models. A mouse model therefore allows future mechanistic studies to build on this work.


Collagen Proteoglycan Mechanical strength Fibril Postnatal Growth 


  1. 1.
    Ansorge, H. L., X. Meng, G. Zhang, G. Veit, M. Sun, J. F. Klement, D. P. Beason, L. J. Soslowsky, M. Koch, and D. E. Birk. Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J. Biol. Chem. 284:8427–8438, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Beredjiklian, P. K. Biologic aspects of flexor tendon laceration and repair. J. Bone Joint Surg. Am. 85-A:539–550, 2003.PubMedGoogle Scholar
  3. 3.
    Birk, D. E., R. A. Hahn, C. Y. Linsenmayer, and E. I. Zycband. Characterization of collagen fibril segments from chicken embryo cornea, dermis and tendon. Matrix Biol. 15:111–118, 1996.PubMedCrossRefGoogle Scholar
  4. 4.
    Birk, D. E., and R. Mayne. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur. J. Cell Biol. 72:352–361, 1997.PubMedGoogle Scholar
  5. 5.
    Birk, D. E., E. I. Zycband, D. A. Winkelmann, and R. L. Trelstad. Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc. Natl Acad. Sci. USA 86:4549–4553, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Bland, Y. S., and D. E. Ashhurst. Fetal and postnatal development of the patella, patellar tendon and suprapatella in the rabbit; changes in the distribution of the fibrillar collagens. J. Anat. 190(Pt 3):327–342, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Booth, F. W., and C. M. Tipton. Ligamentous strength measurements in pre-pubescent and pubescent rats. Growth 34:177–185, 1970.PubMedGoogle Scholar
  8. 8.
    Boykiw, R., P. Sciore, C. Reno, L. Marchuk, C. B. Frank, and D. A. Hart. Altered levels of extracellular matrix molecule mRNA in healing rabbit ligaments. Matrix Biol. 17:371–378, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Danielson, K. G., H. Baribault, D. F. Holmes, H. Graham, K. E. Kadler, and R. V. Iozzo. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136:729–743, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Derwin, K. A., and L. J. Soslowsky. A quantitative investigation of structure–function relationships in a tendon fascicle model. J. Biomech. Eng. 121:598–604, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Derwin, K. A., L. J. Soslowsky, W. D. Green, and S. H. Elder. A new optical system for the determination of deformations and strains: calibration characteristics and experimental results. J. Biomech. 27:1277–1285, 1994.PubMedCrossRefGoogle Scholar
  12. 12.
    Ehrlich, H. P., P. A. Lambert, G. C. Saggers, R. L. Myers, and R. M. Hauck. Dynamic changes appearing in collagen fibers during intrinsic tendon repair. Ann. Plast. Surg. 54:201–206, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Ezura, Y., S. Chakravarti, A. Oldberg, I. Chervoneva, and D. E. Birk. Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J. Cell Biol. 151:779–788, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Festing, M. F. Design and statistical methods in studies using animal models of development. ILAR J. 47:5–14, 2006.PubMedGoogle Scholar
  15. 15.
    Franchi, M., M. Fini, M. Quaranta, V. De Pasquale, M. Raspanti, G. Giavaresi, V. Ottani, and A. Ruggeri. Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 210:1–7, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Gimbel, J. A., J. P. Van Kleunen, S. Mehta, S. M. Perry, G. R. Williams, and L. J. Soslowsky. Supraspinatus tendon organizational and mechanical properties in a chronic rotator cuff tear animal model. J. Biomech. 37:739–749, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Lin, T. W., L. Cardenas, and L. J. Soslowsky. Tendon properties in interleukin-4 and interleukin-6 knockout mice. J. Biomech. 38:99–105, 2005.PubMedGoogle Scholar
  18. 18.
    McBride, D. J., R. L. Trelstad, and F. H. Silver. Structural and mechanical assessment of developing chick tendon. Int. J. Biol. Macromol. 10:194–200, 1988.CrossRefGoogle Scholar
  19. 19.
    Mikic, B., E. Amadei, K. Rossmeier, and L. Bierwert. Sex matters in the establishment of murine tendon composition and material properties during growth. J. Orthop. Res. 28:631–638, 2010.PubMedGoogle Scholar
  20. 20.
    Moore, M. J., and A. De Beaux. A quantitative ultrastructural study of rat tendon from birth to maturity. J. Anat. 153:163–169, 1987.PubMedGoogle Scholar
  21. 21.
    Neuman, R. E., and M. A. Logan. The determination of hydroxyproline. J. Biol. Chem. 184:299–306, 1950.PubMedGoogle Scholar
  22. 22.
    Oryan, A., and A. H. Shoushtari. Histology and ultrastructure of the developing superficial digital flexor tendon in rabbits. Anat. Histol. Embryol. 37:134–140, 2008.PubMedCrossRefGoogle Scholar
  23. 23.
    Parry, D. A., G. R. Barnes, and A. S. Craig. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc. R. Soc. Lond. B Biol. Sci. 203:305–321, 1978.PubMedCrossRefGoogle Scholar
  24. 24.
    Parry, D. A., A. S. Craig, and G. R. Barnes. Tendon and ligament from the horse: an ultrastructural study of collagen fibrils and elastic fibres as a function of age. Proc. R. Soc. Lond. B Biol. Sci. 203:293–303, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Peltz, C. D., S. M. Perry, C. L. Getz, and L. J. Soslowsky. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27:416–420, 2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Rigozzi, S., R. Muller, and J. G. Snedeker. Collagen fibril morphology and mechanical properties of the Achilles tendon in two inbred mouse strains. J. Anat. 216:724–731, 2010.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomopoulos, S., G. Hattersley, V. Rosen, M. Mertens, L. Galatz, G. R. Williams, and L. J. Soslowsky. The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J. Orthop. Res. 20:454–463, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Webster, T. Putting a strain on workers’ health. Compens. Work. Cond. Spring:29–31, 1999.
  30. 30.
    Woo, S. L., R. E. Debski, J. Zeminski, S. D. Abramowitch, S. S. Saw, and J. A. Fenwick. Injury and repair of ligaments and tendons. Annu. Rev. Biomed. Eng. 2:83–118, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Woo, S. L., R. H. Gelberman, N. G. Cobb, D. Amiel, K. Lothringer, and W. H. Akeson. The importance of controlled passive mobilization on flexor tendon healing. A biomechanical study. Acta Orthop. Scand. 52:615–622, 1981.PubMedCrossRefGoogle Scholar
  32. 32.
    Woo, S. L., C. A. Orlando, M. A. Gomez, C. B. Frank, and W. H. Akeson. Tensile properties of the medial collateral ligament as a function of age. J. Orthop. Res. 4:133–141, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang, G., S. Chen, S. Goldoni, B. W. Calder, H. C. Simpson, R. T. Owens, D. J. McQuillan, M. F. Young, R. V. Iozzo, and D. E. Birk. Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J. Biol. Chem. 284:8888–8897, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang, G., Y. Ezura, I. Chervoneva, P. S. Robinson, D. P. Beason, E. T. Carine, L. J. Soslowsky, R. V. Iozzo, and D. E. Birk. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell Biochem. 98:1436–1449, 2006.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang, G., B. B. Young, Y. Ezura, M. Favata, L. J. Soslowsky, S. Chakravarti, and D. E. Birk. Development of tendon structure and function: regulation of collagen fibrillogenesis. J. Musculoskelet. Neuronal Interact. 5:5–21, 2005.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Heather L. Ansorge
    • 1
  • Sheila Adams
    • 2
  • David E. Birk
    • 2
  • Louis J. Soslowsky
    • 1
  1. 1.McKay Orthopaedic Research LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Pathology and Cell Biology, College of MedicineUniversity of South FloridaTampaUSA

Personalised recommendations