Advertisement

Annals of Biomedical Engineering

, Volume 39, Issue 7, pp 2027–2045 | Cite as

A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging

  • A. Valentín
  • J. D. Humphrey
  • G. A. Holzapfel
Article

Abstract

Arterial responses to diverse pathologies and insults likely occur via similar mechanisms. For example, many studies suggest that the natural process of aging and isolated systolic hypertension share many characteristics in arteries, including loss of functional elastin, decreased smooth muscle tone, and altered rates of deposition, and/or crosslinking of fibrillar collagen. Our aim is to show computationally how these coupled effects can impact evolving aortic geometry and mechanical behavior. Employing a thick-walled, multi-layered constrained mixture model, we suggest that a coupled loss of elastin and vasoactive function are fundamental mechanisms by which aortic aging occurs. Moreover, it is suggested that collagenous stiffening, although itself generally an undesirable process, can play a key role in attenuating excessive dilatation, perhaps including the enlargement of abdominal aortic aneurysms.

Keywords

Aneurysms Vascular growth Remodeling Elastin fatigue Collagen turnover Stress 

Notes

Acknowledgments

This work was supported, in part, by NIH grant HL-086418 via the program, Collaborations with National Centers for Biomedical Computing (SimBios at Stanford University) and NIH grant HL-105297.

References

  1. 1.
    Alford, P. W., J. D. Humphrey, and L. A. Taber. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech. Model. Mechanobiol. 7(4):245–262, 2008.PubMedCrossRefGoogle Scholar
  2. 2.
    Aronson, D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J. Hypertens. 21(1):3–12, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Arribas, S. M., A. Hinek, and M. C. Gonzalez. Elastic fibres and vascular structure in hypertension. Pharmacol. Ther. 111(3):771–791, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Åstrand, H., Å. Rydén-Ahlgren, T. Sandgren, and T. Länne. Age-related increase in wall stress of the human abdominal aorta: an in vivo study. J. Vasc. Surg. 42(5):926–931, 2005.Google Scholar
  5. 5.
    Badreck-Amoudi, A., C. K. Patel, T. P. Kane, and S. E. Greenwald. The effect of age on residual strain in the rat aorta. J. Biomech. Eng. 118(4):440–444, 1996.PubMedCrossRefGoogle Scholar
  6. 6.
    Baek, S., K. R. Rajagopal, and J. D. Humphrey. Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J Elast. 80(19):13–31, 2005.CrossRefGoogle Scholar
  7. 7.
    Baek, S., K. R. Rajagopal, and J. D. Humphrey. A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128(1):142–149, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Baek, S., A. Valentín, and J. D. Humphrey. Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann. Biomed. Eng. 35(9):1498–1509, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Bailey, A. J., R. G. Paul, and L. Knott. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106(1–2):1–56, 1998.PubMedCrossRefGoogle Scholar
  10. 10.
    Bendeck, M. P., C. Irvin, M. Reidy, L. Smith, D. Mulholland, M. Horton, and C. M. Giachelli. Smooth muscle cell matrix metalloproteinase production is stimulated via αvβ3 integrin. Arterioscler. Thromb. Vasc. Biol. 20(6):1467–1472, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Bendeck, M. P., F. W. Keeley, and B. L. Langille. Perinatal accumulation of arterial wall constituents: relation to hemodynamic changes at birth. Am. J. Physiol. 267(6 Pt 2):H2268–H2279, 1994.PubMedGoogle Scholar
  12. 12.
    Bendeck, M. P., and B. L. Langille. Rapid accumulation of elastin and collagen in the aortas of sheep in the immediate perinatal period. Circ. Res. 69(4):1165–1199, 1991.PubMedGoogle Scholar
  13. 13.
    Briones, A. M., J. M. Gonzalez, B. Somoza, J. Giraldo, C. J. Daly, E. Vila, M. C. Gonzalez, J. C. McGrath, and S. M. Arribas. Role of elastin in spontaneously hypertensive rat small mesenteric artery remodelling. J. Physiol. 552(Pt 1):185–195, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Cardamone, L., A. Valentín, J. Eberth, and J. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6):431–446, 2009.CrossRefGoogle Scholar
  15. 15.
    Cardamone, L., A. Valentín, J. F. Eberth, and J. D. Humphrey. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Math. Med. Biol. 27(4):343–371, 2010.Google Scholar
  16. 16.
    Chen, J. K., H. B. Haimes, and C. B. Weinberg. Role of growth factors in the contraction and maintenance of collagen lattices made with arterial smooth muscle cells. J. Cell Physiol. 146(1):110–116, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Cho, A., D. W. Courtman, and B. L. Langille. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ. Res. 76(2):168–175, 1995.PubMedGoogle Scholar
  18. 18.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Czirok, A., E. A. Zamir, M. B. Filla, C. D. Little, B. J. Rongish, and G. P. Schatten. Extracellular Matrix Macroassembly Dynamics in Early Vertebrate Embryos, vol. 73. Academic Press, pp. 237–258, 2006Google Scholar
  20. 20.
    Dajnowiec, D., and B. L. Langille. Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin. Sci. (Lond.) 113(1):15–23, 2007.CrossRefGoogle Scholar
  21. 21.
    Davidson, J. M., K. E. Hill, and J. L. Alford. Developmental changes in collagen and elastin biosynthesis in the porcine aorta. Dev. Biol. 118(1):103–111, 1986.Google Scholar
  22. 22.
    Del Corso, L., D. Moruzzo, B. Conte, M. Agelli, A. M. Romanelli, F. Pastine, M. Protti, F. Pentimone, and G. Baggiani. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology 49(5):361–371, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Dietz, H. C., and R. P. Mecham. Mouse models of genetic diseases resulting from mutations in elastic fiber proteins. Matrix Biol. 19(6):481–488, 2000.PubMedCrossRefGoogle Scholar
  24. 24.
    Dobrin, P. Physiology and pathophysiology of blood vessels. In: The Basic Science of Vascular Disease. New York: Futura, 1997, pp. 69–105.Google Scholar
  25. 25.
    Dobrin, P.B., W. H. Baker, and W. C. Gley. Elastolytic and collagenolytic studies of arteries. implications for the mechanical properties of aneurysms. Arch. Surg. 119(4):405–409, 1984.PubMedGoogle Scholar
  26. 26.
    Dobrin, P. B., and T. R. Canfield. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. Am. J. Physiol. Heart Circ. Physiol. 247(1):H124–H131, 1984.Google Scholar
  27. 27.
    Dobrin, P. B., T. H. Schwarcz, and R. Mrkvicka. Longitudinal retractive force in pressurized dog and human arteries. J. Surg. Res. 48(2):116–120, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Dooley, A., B. Gao, X. Shi-Wen, D. J. Abraham, C. M. Black, M. Jacobs, and K. R. Bruckdorfer. Effect of nitric oxide and peroxynitrite on type I collagen synthesis in normal and scleroderma dermal fibroblasts. Free Radic. Biol. Med. 43(2):253–264, 2007.PubMedCrossRefGoogle Scholar
  29. 29.
    Dorrington, K., and N. McCrum. Elastin as a rubber. Biopolymers 16(6):1201–1222, 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Dua, M. M., N. Miyama, J. Azuma, G. M. Schultz, M. Sho, J. Morser, and R. L. Dalman. Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery 148(2):429–435, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Faury, G. Function–structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol. Biol. 49(4):310–325, 2001.PubMedCrossRefGoogle Scholar
  32. 32.
    Feldman, S. A., and S. Glagov. Transmedial collagen and elastin gradients in human aortas: reversal with age. Atherosclerosis 13(3):385–394, 1971.PubMedCrossRefGoogle Scholar
  33. 33.
    Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198(45–46):3583–3602, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Fonck, E., G. Prod’hom, S. Roy, L. Augsburger, D. A. Rüfenacht, and N. Stergiopulos. Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. Am. J. Physiol. Heart Circ. Physiol. 292(6):H2754–H2763, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. Germany: Springer, 1990Google Scholar
  36. 36.
    Galis, Z. S., and J. J. Khatri. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90(3):251–262, 2002.PubMedGoogle Scholar
  37. 37.
    Garanich, J. S., M. Pahakis, and J. M. Tarbell. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. AJP–Heart Circ. Physiol. 288(5):H2244–H2252, 2005.CrossRefGoogle Scholar
  38. 38.
    Gineyts, E., P. A. Cloos, O. Borel, L. Grimaud, P. D. Delmas, and P. Garnero. Racemization and isomerization of type I collagen c-telopeptides in human bone and soft tissues: assessment of tissue turnover. Biochem. J. 345(Pt 3):481–485, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Gleason, R. L., and J. D. Humphrey. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J. Vasc. Res. 41(4):352–363, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Gleason, R. L., L. A. Taber, and J. D. Humphrey. A 2-d model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J. Biomech. Eng. 126(3):371–381, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Greenwald, S. E. Ageing of the conduit arteries. J. Pathol. 211(2):157–172, 2007.PubMedCrossRefGoogle Scholar
  42. 42.
    Greenwald, S. E., J. E. Moore., A. Rachev, T. P. C. Kane, and J.-J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119(4):438–444, 1997.PubMedCrossRefGoogle Scholar
  43. 43.
    Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast mri and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291(4):H1700–H1708, 2006.Google Scholar
  44. 44.
    Hayashi, K., H. Handa, S. Nagasawa, A. Okumura, and K. Moritake. Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13(2):175–184, 1980.PubMedCrossRefGoogle Scholar
  45. 45.
    Holzapfel, G. A., and R. W. Ogden. Biomechanics of Soft Tissue in Cardiovascular Systems. Vienna, New York: Springer, 2003.Google Scholar
  46. 46.
    Holzapfel, G. A., and R. W. Ogden. Modelling the layer-specific 3d residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7:787–799, 2010.PubMedCrossRefGoogle Scholar
  47. 47.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elas. 61(1–3):1–48, 2000.CrossRefGoogle Scholar
  48. 48.
    Hu, J.-J., S. Baek, and J. D. Humphrey. Stress–strain behavior of the passive basilar artery in normotension and hypertension. J. Biomech. 40(11):2559–2563, 2007.PubMedCrossRefGoogle Scholar
  49. 49.
    Hu, J.-J., T. W. Fossum, M. W. Miller, H. Xu, J.-C. Liu, and J. D. Humphrey. Biomechanics of the porcine basilar artery in hypertension. Ann. Biomed. Eng. 35(1):19–29, 2007.PubMedCrossRefGoogle Scholar
  50. 50.
    Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.Google Scholar
  51. 51.
    Humphrey, J. D., J. F. Eberth, W. W. Dye, and R. L. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42(1): 1–8, 2009.Google Scholar
  52. 52.
    Humphrey, J. D., and S. Na. Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30(4):509–523, 2002.Google Scholar
  53. 53.
    Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3): 407–430, 2002.CrossRefGoogle Scholar
  54. 54.
    Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech. Model. Mechanobiol. 2(2):109–126, 2003.PubMedCrossRefGoogle Scholar
  55. 55.
    Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10(1):221–246, 2008.PubMedCrossRefGoogle Scholar
  56. 56.
    Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.PubMedCrossRefGoogle Scholar
  57. 57.
    Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8):918–925, 2002.PubMedCrossRefGoogle Scholar
  58. 58.
    Jacob, M. P. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed. Pharmacother. 57(5–6):195–202, 2003.PubMedCrossRefGoogle Scholar
  59. 59.
    Karnik, S. K., B. S. Brooke, A. Bayes-Genis, L. Sorensen, J. D. Wythe, R. S. Schwartz, M. T. Keating, and D. Y. Li. A critical role for elastin signaling in vascular morphogenesis and disease. Development 130(2):411–423, 2003.PubMedCrossRefGoogle Scholar
  60. 60.
    Karšaj, I., J. Sorić, and J. Humphrey. A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. Int. J. Eng. Sci. 48(11):1375–1372, 2010.Google Scholar
  61. 61.
    Kelleher, C. M., S. E. McLean, and R. P. Mecham. Vascular extracellular matrix and aortic development. Curr. Top. Dev. Biol. 62:153–188, 2004.PubMedCrossRefGoogle Scholar
  62. 62.
    Kielty, C. M., T. J. Wess, L. Haston, J. L. Ashworth, M. J. Sherratt, and C. A. Shuttleworth. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J. Muscle Res. Cell Motil. 23(5–6):581–596, 2002.PubMedCrossRefGoogle Scholar
  63. 63.
    Kozel, B. A., B. J. Rongish, A. Czirok, J. Zach, C. D. Little, E. C. Davis, R. H. Knutsen, J. E. Wagenseil, M. A. Levy, and R. P. Mecham. Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J. Cell Physiol. 207(1):87–96, 2006.PubMedCrossRefGoogle Scholar
  64. 64.
    Krettek, A., G. K. Sukhova, and P. Libby. Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler. Thromb. Vasc. Biol. 23(4):582–587, 2003.PubMedCrossRefGoogle Scholar
  65. 65.
    Kucharz, E. The Collagens, Biochemistry and Pathophysiology. Berlin: Springer, 1992.Google Scholar
  66. 66.
    Lakatta, E. G., M. Wang, and S. S. Najjar. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med. Clin. N. Am. 93(3):583–604, 2009.PubMedCrossRefGoogle Scholar
  67. 67.
    Langille, B. L. Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J. Cardiovasc. Pharmacol. 21:S11–S17, 1993.PubMedGoogle Scholar
  68. 68.
    Leung, D. Y., S. Glagov, and M. B. Mathews. Elastin and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth. Correlation of cellular synthetic response with medial tension. Circ. Res. 41(3):316–323, 1977.PubMedGoogle Scholar
  69. 69.
    Levy, B. I., and A. Tedgui. Biology of the Arterial Wall. Dordrecht: Kluwer Academic, 1999.CrossRefGoogle Scholar
  70. 70.
    Lillie, M. A., and J. M. Gosline. Limits to the durability of arterial elastic tissue. Biomaterials 28(11):2021–2031, 2007.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu, S. Q., and Y. C. Fung. Zero-stress states of arteries. J. Biomech. Eng. 110(1):82–84, 1988.PubMedCrossRefGoogle Scholar
  72. 72.
    Malek, A., and S. Izumo. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol. 263(2 Pt 1):C389–C396, 1992.PubMedGoogle Scholar
  73. 73.
    Malek, A. M., and S. Izumo. Control of endothelial cell gene expression by flow. J. Biomech. 28(12):1515–1528, 1995.PubMedCrossRefGoogle Scholar
  74. 74.
    Mithieux, S. M., and A. S. Weiss. Elastin. Adv. Protein Chem. 70:437–461, 2005.PubMedCrossRefGoogle Scholar
  75. 75.
    Miyama, N., M. M. Dua, J. J. Yeung, G. M. Schultz, T. Asagami, E. Sho, M. Sho, and R. L. Dalman. Hyperglycemia limits experimental aortic aneurysm progression. J. Vasc. Surg. 52(4):975–983, 2010.PubMedCrossRefGoogle Scholar
  76. 76.
    Mondy, J. S., V. Lindner, J. K. Miyashiro, B. C. Berk, R. H. Dean, and R. L. Geary. Platelet-derived growth factor ligand and receptor expression in response to altered blood flow in vivo. Circ. Res. 81(3): 320–327, 1997.PubMedGoogle Scholar
  77. 77.
    Nichol, J., A. Khan, M. Birbach, J. Gaynor, and K. Gooch. Hemodynamics and axial strain additively increase matrix remodeling and MMP-9, but not MMP-2, expression in arteries engineered by directed remodeling. Tissue Eng. A 15(6):1281–1290, 2009.Google Scholar
  78. 78.
    Nichols, W., and M. O’Rourke. McDonald’s Blood Flow in Arteries, 3rd edn. London: Edward Arnold, 1990.Google Scholar
  79. 79.
    Niedermüller, H., M. Skalicky, G. Hofecker, and A. Kment. Investigations on the kinetics of collagen-metabolism in young and old rats. Exp. Gerontol. 12(5–6):159–68, 1977.PubMedCrossRefGoogle Scholar
  80. 80.
    O’Callaghan, C. J., and B. Williams. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-β1. Hypertension 36(3):319–324, 2000.PubMedGoogle Scholar
  81. 81.
    Okamoto, R. J., H. Xu, N. T. Kouchoukos, M. R. Moon, and T. M. Sundt III. The influence of mechanical properties on wall stress and distensibility of the dilated ascending aorta. J. Thorac. Cardiovasc. Surg. 126(3):842–850, 2003.PubMedCrossRefGoogle Scholar
  82. 82.
    O’Rourke, M. F. Arterial aging: pathophysiological principles. Vasc. Med. 12(4):329–341, 2007.PubMedCrossRefGoogle Scholar
  83. 83.
    O’Rourke, M. F., and J. Hashimoto. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50(1):1–13, 2007.PubMedCrossRefGoogle Scholar
  84. 84.
    Pedrigi, R. M., E. Staff, G. David, S. Glenn, and J. D. Humphrey. Altered multiaxial mechanical properties of the porcine anterior lens capsule cultured in high glucose. J. Biomech. Eng. 129(1):121–125, 2007.PubMedCrossRefGoogle Scholar
  85. 85.
    Rabinovitch, M. Pulmonary hypertension: pathophysiology as a basis for clinical decision making. J. Heart Lung Transplant. 18(11):1041–1053, 1999.PubMedCrossRefGoogle Scholar
  86. 86.
    Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36(5):661–670, 2003.PubMedCrossRefGoogle Scholar
  87. 87.
    Ramirez, F., and L. Pereira. Mutations of extracellular matrix components in vascular disease. Ann. Thorac. Surg. 67(6):1857–1858; discussion 1868–1870, 1999.Google Scholar
  88. 88.
    Rizvi, M. A. D., L. Katwa, D. P. Spadone, and P. R. Myers. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. J. Mol. Cell Cardiol. 28(2):243–252, 1996.PubMedCrossRefGoogle Scholar
  89. 89.
    Rizvi, M. A. D., and P. R. Myers. Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels. J. Mol. Cell Cardiol. 29(7):1779–1789, 1997.PubMedCrossRefGoogle Scholar
  90. 90.
    Rodriguez-Feo, J. A., J. P. G. Sluijter, D. P. V. de Kleijn, and G. Pasterkamp. Modulation of collagen turnover in cardiovascular disease. Curr. Pharm. Des. 11(19):2501–2514, 2005.PubMedCrossRefGoogle Scholar
  91. 91.
    Ruberti, J. W., and N. J. Hallab. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336(2):483–489, 2005.PubMedCrossRefGoogle Scholar
  92. 92.
    Safar, M. E. Arterial aging—hemodynamic changes and therapeutic options. Nat. Rev. Cardiol. 7(8):442–449, 2010.PubMedCrossRefGoogle Scholar
  93. 93.
    Saini, A., C. Berry, and S. Greenwald. Effect of age and sex on residual stress in the aorta. J. Vasc. Res. 32(6):398–405, 1995.PubMedGoogle Scholar
  94. 94.
    Seliktar, D., R. Nerem, and Z. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29(11):923–934, 2001.PubMedCrossRefGoogle Scholar
  95. 95.
    Seliktar, D., R. M. Nerem, and Z. S. Galis. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng. 9(4):657–666, 2003.PubMedCrossRefGoogle Scholar
  96. 96.
    Sluijter, J. P. G., M. B. Smeets, E. Velema, G. Pasterkamp, and D. P. V. de Kleijn. Increase in collagen turnover but not in collagen fiber content is associated with flow-induced arterial remodeling. J. Vasc. Res. 41(6):546–55, 2004.PubMedCrossRefGoogle Scholar
  97. 97.
    Stenmark, K. R., and R. P. Mecham. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu. Rev. Physiol. 59:89–144, 1997.PubMedCrossRefGoogle Scholar
  98. 98.
    Stergiopulos, N., S. Vulliemoz, A. Rachev, J. J. Meister, and S. E. Greenwald. Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38(3):237–246, 2001.PubMedCrossRefGoogle Scholar
  99. 99.
    Strauss, B. H., R. J. Chisholm, F. W. Keeley, A. I. Gotlieb, R. A. Logan, and P. W. Armstrong. Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ. Res. 75(4): 650–658, 1994.Google Scholar
  100. 100.
    Strauss, B. H., R. Robinson, W. B. Batchelor, R. J. Chisholm, G. Ravi, M. K. Natarajan, R. A. Logan, S. R. Mehta, D. E. Levy, A. M. Ezrin, and F. W. Keeley. In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ. Res. 79(3):541–550, 1996.PubMedGoogle Scholar
  101. 101.
    Taber, L. A., and J. D. Humphrey. Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123(6):528–535, 2001.PubMedCrossRefGoogle Scholar
  102. 102.
    Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, R. M. Nerem, and D. G. Harrison. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. 269(6 Pt 1):C1371–C1378, 1995.PubMedGoogle Scholar
  103. 103.
    Vaishnav, R. N., J. Vossoughi, D. J. Patel, L. N. Cothran, B. R. Coleman, and E. L. Ison-Franklin. Effect of hypertension on elasticity and geometry of aortic tissue from dogs. J. Biomech. Eng. 112(1):70–74, 1990.PubMedCrossRefGoogle Scholar
  104. 104.
    Valentín, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6(32):293–306, 2009.PubMedCrossRefGoogle Scholar
  105. 105.
    Valentín, A., and J. D. Humphrey. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Phil. Trans. R. Soc. Lond. A 367(1902):3585–3606, 2009.CrossRefGoogle Scholar
  106. 106.
    Valentín, A., and J. D. Humphrey. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J. Biomech. Eng. 131(10):101006, 2009.PubMedCrossRefGoogle Scholar
  107. 107.
    Valentín, A., and J. D. Humphrey. Modeling effects of axial extension on arterial growth and remodeling. Med. Biol. Eng. Comput. 47(9):979–987, 2009.PubMedCrossRefGoogle Scholar
  108. 108.
    Virmani, R., A. P. Avolio, W. J. Mergner, M. Robinowitz, E. E. Herderick, J. F. Cornhill, S. Y. Guo, T. H. Liu, D. Y. Ou, and M. O’Rourke. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am. J. Pathol. 139(5):1119–1129, 1991.PubMedGoogle Scholar
  109. 109.
    Wagenseil, J. E., C. H. Ciliberto, R. H. Knutsen, M. A. Levy, A. Kovacs, and R. P. Mecham. The importance of elastin to aortic development in mice. Am. J. Physiol. Heart Circ. Physiol. 299(2):H257–H264, 2010.Google Scholar
  110. 110.
    Wagenseil, J. E., and R. P. Mecham. New insights into elastic fiber assembly. Birth Defects Res. C Embryo Today 81(4):229–240, 2007.PubMedCrossRefGoogle Scholar
  111. 111.
    Wang, M., J. Zhang, G. Spinetti, L.-Q. Jiang, R. Monticone, D. Zhao, L. Cheng, M. Krawczyk, M. Talan, G. Pintus, and E. G. Lakatta. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am. J. Pathol. 167(5):1429–1442, 2005.PubMedCrossRefGoogle Scholar
  112. 112.
    Weizsäcker, H. W., and T. D. Kampp. Passive elastic properties of the rat aorta. Biomed. Tech. (Berl.) 35(10):224–234, 1990.CrossRefGoogle Scholar
  113. 113.
    Wenn, C. M., and D. L. Newman. Arterial tortuosity. Australas. Phys. Eng. Sci. Med. 13(2):67–70, 1990.PubMedGoogle Scholar
  114. 114.
    Wicker, B. K., H. P. Hutchens, Q. Wu, A. T. Yeh, and J. D. Humphrey. Normal basilar artery structure and biaxial mechanical behaviour. Comput. Methods Biomech. Biomed. Eng. 11(5):539–551, 2008.CrossRefGoogle Scholar
  115. 115.
    Xu, C., C. K. Zarins, H. S. Bassiouny, W. H. Briggs, C. Reardon, and S. Glagov. Differential transmural distribution of gene expression for collagen types I and III proximal to aortic coarctation in the rabbit. J. Vasc. Res. 37(3):170–182, 2000.PubMedCrossRefGoogle Scholar
  116. 116.
    Zeller, P. J., and T. C. Skalak. Contribution of individual structural components in determining the zero-stress state in small arteries. J. Vasc. Res. 35(1):8–17, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • A. Valentín
    • 1
  • J. D. Humphrey
    • 2
  • G. A. Holzapfel
    • 1
    • 3
  1. 1.Institute of Biomechanics, Center of Biomedical EngineeringGraz University of TechnologyGrazAustria
  2. 2.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  3. 3.Department of Solid Mechanics, School of Engineering SciencesRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations