Annals of Biomedical Engineering

, Volume 39, Issue 7, pp 2010–2026 | Cite as

A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms

  • C. Basciano
  • C. Kleinstreuer
  • S. Hyun
  • E. A. Finol


A novel computational particle-hemodynamics analysis of key criteria for the onset of an intraluminal thrombus (ILT) in a patient-specific abdominal aortic aneurysm (AAA) is presented. The focus is on enhanced platelet and white blood cell residence times as well as their elevated surface-shear loads in near-wall regions of the AAA sac. The generalized results support the hypothesis that a patient’s AAA geometry and associated particle-hemodynamics have the potential to entrap activated blood particles, which will play a role in the onset of ILT. Although the ILT history of only a single patient was considered, the modeling and simulation methodology provided allow for the development of an efficient computational tool to predict the onset of ILT formation in complex patient-specific cases.


Patient-specific AAA Computational analysis ILT onset criteria 



The authors would like to thank Dr. Satish Muluk and the Department of Radiology at Allegheny General Hospital for supplying the CT images used in our study, as well as Ms Julie Ng for assisting in the segmentation/surface meshing of the AAA models and Ms Emily Childress for assisting in the finalization of the manuscript. We also acknowledge research funding from the National Heart, Lung, and Blood Institute (R15HL087268) and Carnegie Mellon University’s Biomedical Engineering Department. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health. The authors also acknowledge the use of ANSYS® Academic Research, Release 12.1 (ANSYS Inc., Canonsburg, PA) for all computational fluid-particle simulations.


  1. 1.
    Basciano, C. A. Computational particle-hemodynamics analysis applied to an abdominal aortic aneurysm with thrombus and microsphere-targeting of liver tumors. PhD Dissertation, North Carolina State University, Department of Mechanical and Aerospace Engineering, 2010.Google Scholar
  2. 2.
    Basciano, C. A., J. H. Y. Ng, E. A. Finol, and C. Kleinstreuer. A relation between particle hemodynamics and intraluminal thrombus formation in abdominal aortic aneurysms. In: Proceedings of the ASME Summer Bioengineering Conference, June 17–21, Lake Tahoe, CA, USA, 2009.Google Scholar
  3. 3.
    Biasetti, J., T. C. Gasser, M. Auer, U. Hedin, and F. Labruto. Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanics. Ann. Biomed. Eng. 38(2):380–390, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Boutsianis, E., M. Guala, U. Olgac, S. Wildermuth, K. Hoyer, Y. Ventikos, and D. Poulikakos. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. J. Biomech. Eng. 131:011008, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Choke, E., G. Cockerill, W. R. W. Wilson, S. Sayed, J. Dawson, I. Loftus, and M. M. Thompson. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vascular Surg. 30:227–244, 2005.CrossRefGoogle Scholar
  6. 6.
    Dai, J., L. Louedec, M. Philippe, J.-B. Michel, and X. Houard. Effect of blocking platelet activation with AZD6140 on development of abdominal aortic aneurysm in a rat aneurysmal model. J. Vasc. Surg. 49:719–727, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    de Vega Céniga, M., R. Gómez, L. Estallo, N. de la Fuente, B. Viviens, and A. Barba. Analysis of expansion patterns in 4-4.9 cm abdominal aortic aneurysms. Ann. Vasc. Surg. 22:37–44, 2008.CrossRefGoogle Scholar
  8. 8.
    Fogelson, A. L., and R. D. Guy. Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21(4):293–334, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Fraser, K. H., S. Meagher, J. R. Blake, W. J. Easson, and P. J. Hoskins. Characterization of abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med. Biol. 34(1):73–80, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Frauenfelder, T., M. Lotfey, T. Boehm, and S. Wildermuth. Computational fluid dynamics: Hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc. Inter. Rad. 29:613–623, 2006.CrossRefGoogle Scholar
  11. 11.
    Guimarães, T. A. S., G. N. Garcia, M. B. Dalio, M. Bredarioli, C. A. P. Bezerra, and T. Moriya. Morphological aspects of mural thrombi deposition residual lumen route in infrarenal abdominal aortic aneurisms. Acta Cir. Bras. 23(Suppl 1):151–156, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    Hans, S. S. S., O. Jareunpoon, M. Balasubramaniam, and G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41(4):584–588, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X.-M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. 286:H1916–H1922, 2004.Google Scholar
  14. 14.
    Houard, X., A. Leclercq, V. Fontaine, M. Coutard, J.-L. Martin-Ventura, B. Ho-Tin-Noé, Z. Touat, O. Meilhac, and J.-B. Michel. Retention and activation of blood-borne proteases in the arterial wall: implications for atherothrombosis. J. Am. Coll. Cardiol. 48(9):A3–A9, 2006.CrossRefGoogle Scholar
  15. 15.
    Houard, X., F. Rouzet, Z. Touat, M. Philippe, M. Dominguez, V. Fontaine, L. Sarda-Mantel, A. Meulemans, D. Le Guludec, O. Meilhac, and J.-B. Michell. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J. Pathol. 212:20–28, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Hyun, S., C. Kleinstreuer, P. W. Longest, and C. Chen. Particle-hemodynamics simulations and design options for surgical reconstruction of diseased carotid artery bifurcations. J. Biomech. Eng. 126(2):188–195, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Kleinstreuer, C. Biofluid Dynamics: Principles and Selected Applications. Boca Raton, FL: CRC Press, Taylor and Francis, 492 pp., 2006.Google Scholar
  18. 18.
    Kleinstreuer, C., and Z. Li. Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed. Eng. Online 5:19–32, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    Lasheras, J. C. The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39:293–319, 2007.CrossRefGoogle Scholar
  20. 20.
    Les, A. S., S. C. Shadden, A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4):1288–1313, 2010.PubMedCrossRefGoogle Scholar
  21. 21.
    Longest, P. W., C. Kleinstreuer, and J. R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33:577–601, 2004.CrossRefGoogle Scholar
  22. 22.
    Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131(6):061015, 2009.PubMedCrossRefGoogle Scholar
  23. 23.
    Muraki, N. Ultrasonic studies of the abdominal aorta with special reference to hemodynamic considerations on thrombus formation in the abdominal aortic aneurysm. J. Jpn. Coll. Angiol. 23:401–413, 1983.Google Scholar
  24. 24.
    Olufsen, M. S., C. S. Peskin, W. Yong Kim, E. M. Pederson, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Panton, R. L. Incompressible Flow (3rd ed.). Hoboken, NJ: John Wiley and Sons Inc., 821 pp., 2005.Google Scholar
  26. 26.
    Pivkin, I. V., P. D. Richardson, and G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. PNAS 103(46):17164–17169, 2006.PubMedCrossRefGoogle Scholar
  27. 27.
    Rayz, V. L., L. Boussel, L. Ge, J. R. Leach, A. J. Martin, M. T. Lawton, C. McCulloch, and D. Saloner. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38(10):3058–3069, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Raz, S., S. Einav, Y. Alemu, and D. Bluestein. DPIV prediction of flow induced platelet activation–comparison to numerical predictions. Ann. Biomed. Eng. 35(4):493–504, 2007.PubMedCrossRefGoogle Scholar
  29. 29.
    Salsac, A. V., S. R. Sparks, J.-M. Chomaz, and J. C. Lasheras. Evolution of the wall shear stresses during progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 560:19–51, 2006.CrossRefGoogle Scholar
  30. 30.
    Salsac, A. V., S. R. Sparks, and J. C. Lasheras. Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Ann. Vasc. Surg. 18:14–21, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Salsac, A. V., R. Tang, and J. C. Lasheras. Influence of hemodynamics on the formation of an intraluminal thrombus in abdominal aortic aneurysms (abstract). XXXVI Annual ESAO Congress, 2–5 September 2009, Compiègne, France. Int. J. Artif. Organs 32(7):397, 2009.Google Scholar
  32. 32.
    Shankaran, H., P. Alexandridis, and S. Neelamegham. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von willebrand factor in suspension. Blood 101:2637–2645, 2003.PubMedCrossRefGoogle Scholar
  33. 33.
    Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38(4):1442–1450, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Shum, J., E. S. Di Martino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Shum, J., G. Martufi, E. S. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. doi: 10.1007/s10439-010-0175-3.
  36. 36.
    Shum, J., A. Xu, I. Chatnuntawech, and E. A. Finol. A framework for the automatic generation of surface topologies for abdominal aortic aneurysm models. Ann. Biomed. Eng. doi: 10.1007/s10439-010-0165-5.
  37. 37.
    Speelman, L., G. W. H. Schurink, M. H. Bosboom, J. Buth, M. Breeuwer, F. N. van de Vosse, and M. H. Jacobs. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J. Vasc. Surg. 51:19–26, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Swedenborg, J., and P. Eriksson. The intraluminal thrombus as a source of proteolytic activity. Ann. NY Acad. Sci. 1085:133–138, 2006.PubMedCrossRefGoogle Scholar
  39. 39.
    Touat, Z., V. Ollivier, J. Dai, M. G. Huisse, P. Rossignol, O. Meilhac, M. C. Guillin, and J. B. Michel. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am. J. Pathol. 163(3):1022–1030, 2006.CrossRefGoogle Scholar
  40. 40.
    Truijers, M., M. F. Fillinger, K. J. W. Renema, S. P. Marra, L. J. Oostveen, H. A. J. M. Kurvers, L. J. SchultzeKool, and J. D. Blankensteijn. In vivo imaging of changes in abdominal aortic aneurysm thrombus volume during the cardiac cycle. J. Endovasc. Ther. 16:314–319, 2009.PubMedCrossRefGoogle Scholar
  41. 41.
    Vande Geest, J. P., D. H. J. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1098–1106, 2006.CrossRefGoogle Scholar
  42. 42.
    Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.PubMedCrossRefGoogle Scholar
  43. 43.
    Vorp, D. A., P. C. Lee, D. H. J. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, and M. W. Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Wurzinger, L. J., R. Opitz, P. Blasberg, and H. Schmid-Schonbein. Platelet and coagulation parameters following millisecond exposure to laminar shear stress. J. Thromb. Haemost. 54:381–386, 1985.Google Scholar
  45. 45.
    Xu, Z., N. Chen, M. M. Kamocka, E. D. Rosen, and M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface 5:705–722, 2008.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamazumi, K., M. Ojiro, H. Okumura, and T. Aikou. An activated state of blood coagulation and fibrinolysis in patients with abdominal aortic aneurysm. Am. J. Surg. 175:297–301, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • C. Basciano
    • 1
  • C. Kleinstreuer
    • 2
    • 3
    • 4
  • S. Hyun
    • 5
  • E. A. Finol
    • 6
  1. 1.Physics-Based Computing Group, Southeast DivisionApplied Research AssociatesRaleighUSA
  2. 2.Department of Mechanical & Aerospace EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Joint Department of Biomedical EngineeringNorth Carolina State UniversityRaleighUSA
  4. 4.University of North Carolina at Chapel HillChapel HillUSA
  5. 5.Department of Biomedical EngineeringMercer UniversityMaconUSA
  6. 6.Departments of Mechanical and Biomedical Engineering, Institute for Complex Engineered SystemsCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations