Annals of Biomedical Engineering

, Volume 39, Issue 6, pp 1690–1702 | Cite as

Characterization of Mitral Valve Annular Dynamics in the Beating Heart

  • Manuel K. Rausch
  • Wolfgang Bothe
  • John-Peder Escobar Kvitting
  • Julia C. Swanson
  • Neil B. IngelsJr.
  • D. Craig Miller
  • Ellen KuhlEmail author


The objective of this study is to establish a mathematical characterization of the mitral valve annulus that allows a precise qualitative and quantitative assessment of annular dynamics in the beating heart. We define annular geometry through 16 miniature markers sewn onto the annuli of 55 sheep. Using biplane videofluoroscopy, we record marker coordinates in vivo. By approximating these 16 marker coordinates through piecewise cubic splines, we generate a smooth mathematical representation of the 55 mitral annuli. We time-align these 55 annulus representations with respect to characteristic hemodynamic time points to generate an averaged baseline annulus representation. To characterize annular physiology, we extract classical clinical metrics of annular form and function throughout the cardiac cycle. To characterize annular dynamics, we calculate displacements, strains, and curvature from the discrete mathematical representations. To illustrate potential future applications of this approach, we create rapid prototypes of the averaged mitral annulus at characteristic hemodynamic time points. In summary, this study introduces a novel mathematical model that allows us to identify temporal, regional, and inter-subject variations of clinical and mechanical metrics that characterize mitral annular form and function. Ultimately, this model can serve as a valuable tool to optimize both surgical and interventional approaches that aim at restoring mitral valve competence.


Mitral regurgitation Mitral valve Annulus Dynamics Strain Curvature Splines 



We thank Paul Chang, Eleazar P. Briones, Lauren R. Davis, and Kathy N. Vo for technical assistance, Maggie Brophy and Sigurd Hartnett for careful marker image digitization, and George T. Daughters III for computation of 4D data from biplane 2D marker coordinates. This work was supported in part by the US National Science Foundation grant CAREER award CMMI-0952021 to Ellen Kuhl, by US National Institutes of Health grants R01 HL29589 and R01 HL67025 to D. Craig Miller, by the Deutsche Herzstiftung, Frankfurt, Germany, Research Grant S/06/07 to Wolfgang Bothe, by the U.S.- Norway Fulbright Foundation, the Swedish Heart-Lung Foundation, and the Swedish Society for Medical Research to John-Peder Escobar Kvitting, and by the Western States Affiliate American Heart Association Fellowship to Julia C. Swanson.

Supplementary material

Supplementary material 1 (MP4 767 kb)

Supplementary material 2 (MP4 729 kb)

Supplementary material 3 (MP4 798 kb)


  1. 1.
    Azencott, R., R. Glowinsky, J. He, R. H. W. Hoppe, A. Jajoo, A. Martynenko, S. Benzecry, S. H. Little, and W. A. Zoghbi. Diffeomorphic matching and dynamic deformable surfaces in 3D medical imaging. Comput. Methods Appl. Math. 10:1–57, 2010.Google Scholar
  2. 2.
    Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, B. Riegel, and A. C. C. Heart. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:E84–E231, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Bothe, W., J. P. Escobar Kvitting, E. H. Stephens, J. C. Swanson, N. B. Ingels, and D. C. Miller. Effects of annuloplasty ring implantation on regional mitral leaflet tenting area during acute myocardial ischemia. J. Thorac. Cardiovasc. Surg. 141:345–353, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Goktepe, J. C. Swanson, N. B. Ingels, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart (submitted).Google Scholar
  5. 5.
    Bothe, W., J. P. Kvitting, J. C. Swanson, S. Goktepe, K. N. Vo, N. B. Ingels, and D. C. Miller. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38(3):340–349, 2010.PubMedCrossRefGoogle Scholar
  6. 6.
    Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr., and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139:1114–1122, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Carpentier, A. La valvuloplastie reconstitutive. Une nouvelle technique de valvuloplastie mitrale. Presse Med. 77:251–253, 1969.PubMedGoogle Scholar
  8. 8.
    Carpentier, A. Cardiac valve surgery—the “French correction”. J. Thorac. Cardiovasc. Surg. 86:323–337, 1983.PubMedGoogle Scholar
  9. 9.
    Conti, C. A., E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone, M. Cotrufo, and A. Redaelli. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32:212–221, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Dagum, P., G. R. Green, F. J. Nistal, G. T. Daughters, T. A. Timek, L. E. Foppiano, A. F. Bolger, N. B. Ingels, and D. C. Miller, Jr. Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation 100:II54–II62, 1999.PubMedGoogle Scholar
  11. 11.
    Dagum, P., T. A. Timek, G. R. Green, D. Lai, G. T. Daughters, D. H. Liang, M. Hayase, N. B. Ingels, Jr., and D. C. Miller. Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation 102:III62–III69, 2000.PubMedGoogle Scholar
  12. 12.
    de Boor, C. A Practical Guide to Splines. New York: Springer, 368 pp, 1978.Google Scholar
  13. 13.
    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, III, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Einstein, D. R., F. Del Pin, X. M. Jiao, A. P. Kuprat, J. P. Carson, K. S. Kunzelman, R. P. Cochran, J. M. Guccione, and M. B. Ratcliffe. Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Biomed. Eng. 26:348–380, 2010.CrossRefGoogle Scholar
  15. 15.
    Enriquez-Sarano, M., C. W. Akins, and A. Vahanian. Mitral regurgitation. Lancet 373:1382–1394, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    Glasson, J. R., G. R. Green, J. F. Nistal, P. Dagum, M. Komeda, G. T. Daughters, A. F. Bolger, L. E. Foppiano, N. B. Ingels, Jr., and D. C. Miller. Mitral annular size and shape in sheep with annuloplasty rings. J. Thorac. Cardiovasc. Surg. 117:302–309, 1999.PubMedCrossRefGoogle Scholar
  17. 17.
    Glasson, J. R., M. Komeda, G. T. Daughters, L. E. Foppiano, A. F. Bolger, T. L. Tye, N. B. Ingels, and C. Miller. Most ovine mitral annular three-dimensional size reduction occurs before ventricular systole and is abolished with ventricular pacing. Circulation 96:115–122, 1997.Google Scholar
  18. 18.
    Glasson, J. R., M. K. Komeda, G. T. Daughters, M. A. Niczyporuk, A. F. Bolger, N. B. Ingels, and D. C. Miller. Three-dimensional regional dynamics of the normal mitral anulus during left ventricular ejection. J. Thorac. Cardiovasc. Surg. 111:574–585, 1996.PubMedCrossRefGoogle Scholar
  19. 19.
    Goktepe, S., W. Bothe, J. P. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Anterior mitral leaflet curvature in the beating ovine heart: a case study using videofluoroscopic markers and subdivision surfaces. Biomech. Model. Mechanobiol. 9:281–293, 2010.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorman, III, J. H., K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Jr. Edmunds. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112:712–726, 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Gorman, III, J. H., B. M. Jackson, Y. Enomoto, and R. C. Gorman. The effect of regional ischemia on mitral valve annular saddle shape. Ann. Thorac. Surg. 77:544–548, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Jimenez, J. H., S. W. Liou, M. Padala, Z. He, M. Sacks, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134:1562–1568, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Jimenez, J. H., D. D. Soerensen, Z. M. He, S. Q. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.PubMedCrossRefGoogle Scholar
  24. 24.
    Jimenez, J. H., D. D. Soerensen, Z. M. He, J. Ritchie, and A. P. Yoganathan. Mitral valve function and chordal force distribution using a flexible annulus model: an in vitro study. Ann. Biomed. Eng. 33:557–566, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Jones, C. J., L. Raposo, and D. G. Gibson. Functional importance of the long axis dynamics of the human left ventricle. Br. Heart J. 63:215–220, 1990.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139:378–387, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Kheradvar, A., and M. Gharib. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 35:2050–2064, 2007.PubMedCrossRefGoogle Scholar
  28. 28.
    Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37:1–13, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Kincaid, E. H., R. D. Riley, M. H. Hines, J. W. Hammon, and N. D. Kon. Anterior leaflet augmentation for ischemic mitral regurgitation. Ann. Thorac. Surg. 78:564–568, 2004; (discussion 568).PubMedCrossRefGoogle Scholar
  30. 30.
    Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–H1149, 2008.PubMedCrossRefGoogle Scholar
  31. 31.
    Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7:108–116, 1998.PubMedGoogle Scholar
  32. 32.
    Kvitting, J. P., W. Bothe, S. Goektepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122:1683–1689, 2010.PubMedCrossRefGoogle Scholar
  33. 33.
    Kwan, J., T. Shiota, D. A. Agler, Z. B. Popovic, J. X. Qin, M. A. Gillinov, W. J. Stewart, D. M. Cosgrove, P. M. McCarthy, and J. D. Thomas. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 107:1135–1140, 2003.PubMedCrossRefGoogle Scholar
  34. 34.
    Lansac, E., K. H. Lim, Y. Shomura, W. A. Goetz, H. S. Lim, N. T. Rice, H. Saber, and C. M. Duran. Dynamic balance of the aortomitral junction. J. Thorac. Cardiovasc. Surg. 123:911–918, 2002.PubMedCrossRefGoogle Scholar
  35. 35.
    Lantada, A. D., R. Del Valle-Fernandez, P. L. Morgado, J. Munoz-Garcia, J. L. M. Sanz, J. M. Munoz-Guijosa, and J. E. Otero. Development of personalized annuloplasty rings: combination of ct images and CAD-CAM tools. Ann. Biomed. Eng. 38:280–290, 2010.CrossRefGoogle Scholar
  36. 36.
    Legget, M. E., G. Bashein, J. A. McDonald, B. I. Munt, R. W. Martin, C. M. Otto, and F. H. Sheehan. Three-dimensional measurement of the mitral annulus by multiplane transesophageal echocardiography: in vitro validation and in vivo demonstration. J. Am. Soc. Echocardiogr. 11:188–200, 1998.PubMedCrossRefGoogle Scholar
  37. 37.
    Levine, R. A., M. D. Handschumacher, A. J. Sanfilippo, A. A. Hagege, P. Harrigan, J. E. Marshall, and A. E. Weyman. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 80:589–598, 1989.PubMedGoogle Scholar
  38. 38.
    Levine, R. A., M. O. Triulzi, P. Harrigan, and A. E. Weyman. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 75:756–767, 1987.PubMedGoogle Scholar
  39. 39.
    Niczyporuk, M. A., and D. C. Miller. Automatic tracking and digitization of multiple radiopaque myocardial markers. Comput. Biomed. Res. 24:129–142, 1991.PubMedCrossRefGoogle Scholar
  40. 40.
    Oliveira, J. M., and M. J. Antunes. Mitral valve repair: better than replacement. Heart 92:275–281, 2006.PubMedCrossRefGoogle Scholar
  41. 41.
    Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64:113–120, 1981.PubMedGoogle Scholar
  42. 42.
    Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.PubMedCrossRefGoogle Scholar
  43. 43.
    Pai, R. G., M. M. Bodenheimer, S. M. Pai, J. H. Koss, and R. D. Adamick. Usefulness of systolic excursion of the mitral anulus as an index of left ventricular systolic function. Am. J. Cardiol. 67:222–224, 1991.PubMedCrossRefGoogle Scholar
  44. 44.
    Rausch, M. K., W. Bothe, J. P. Kvitting, S. Goektepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the entire ovine anterior mitral valve leaflet. J. Biomech. 2011. doi: 10.1016/j.jbiomech.2011.01.020
  45. 45.
    Salgo, I. S., J. H. Gorman, III, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, L. H. Edmunds Jr., et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717, 2002.PubMedCrossRefGoogle Scholar
  46. 46.
    Stevanella, M., E. Votta, and A. Redaelli. Mitral valve finite element modeling: implications of tissues’ nonlinear response and annular motion. J. Biomech. Eng. Trans. ASME 131:121010-1–121010-9, 2009.Google Scholar
  47. 47.
    Tamura, K., M. Murakami, and M. Washizu. Healing of wound sutures on the mitral valve: an experimental study. Gen. Thorac. Cardiovasc. Surg. 55:98–104, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Timek, T. A., P. Dagum, D. T. Lai, D. Liang, G. T. Daughters, F. Tibayan, N. B. Ingels, Jr., and D. C. Miller. Tachycardia-induced cardiomyopathy in the ovine heart: mitral annular dynamic three-dimensional geometry. J. Thorac. Cardiovasc. Surg. 125:315–324, 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Tsakiris, A. G., G. Von Bernuth, G. C. Rastelli, M. J. Bourgeois, J. L. Titus, and E. H. Wood. Size and motion of the mitral valve annulus in anesthetized intact dogs. J. Appl. Physiol. 30:611–618, 1971.PubMedGoogle Scholar
  50. 50.
    Votta, E., F. Maisano, M. Soncini, A. Redaelli, F. M. Montevecchi, and O. Alfieri. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J. Heart Valve Dis. 11:810–822, 2002.PubMedGoogle Scholar
  51. 51.
    Watanabe, N., Y. Ogasawara, Y. Yamaura, N. Wada, T. Kawamoto, E. Toyota, T. Akasaka, and K. Yoshida. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation 112:I458–I462, 2005.PubMedCrossRefGoogle Scholar
  52. 52.
    Wenk, J. F., Z. H. Zhang, G. M. Cheng, D. Malhotra, G. Acevedo-Bolton, M. Burger, T. Suzuki, D. A. Saloner, A. W. Wallace, J. M. Guccione, and M. B. Ratcliffe. First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89:1546–1554, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Manuel K. Rausch
    • 1
  • Wolfgang Bothe
    • 3
  • John-Peder Escobar Kvitting
    • 3
  • Julia C. Swanson
    • 3
  • Neil B. IngelsJr.
    • 3
    • 4
  • D. Craig Miller
    • 3
  • Ellen Kuhl
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringStanford University School of EngineeringStanfordUSA
  2. 2.Department of BioengineeringStanford University School of EngineeringStanfordUSA
  3. 3.Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordUSA
  4. 4.Department of Cardiovascular Physiology and BiophysicsPalo Alto Medical FoundationPalo AltoUSA

Personalised recommendations