Annals of Biomedical Engineering

, Volume 39, Issue 6, pp 1745–1758 | Cite as

Measurement of the Thermal Conductivity of Carbon Nanotube–Tissue Phantom Composites with the Hot Wire Probe Method

  • Saugata Sarkar
  • Kristen Zimmermann
  • Weinan Leng
  • Peter Vikesland
  • Jianfei Zhang
  • Harry Dorn
  • Thomas Diller
  • Christopher Rylander
  • Marissa Nichole Rylander
Article

Abstract

Developing combinatorial treatments involving laser irradiation and nanoparticles require an understanding of the effect of nanoparticle inclusion on tissue thermal properties, such as thermal conductivity. This information will permit a more accurate prediction of temperature distribution and tumor response following therapy, as well as provide additional information to aid in the selection of the appropriate type and concentration of nanoparticles. This study measured the thermal conductivity of tissue representative phantoms containing varying types and concentrations of carbon nanotubes (CNTs). Multi-walled carbon nanotubes (MWNTs, length of 900–1200 nm and diameter of 40–60 nm), single-walled carbon nanotubes (SWNTs, length of 900–1200 nm and diameter <2 nm), and a novel embodiment of SWNTs referred to as single-walled carbon nanohorns (SWNHs, length of 25–50 nm and diameter of 3–5 nm) of varying concentrations (0.1, 0.5, and 1.0 mg/mL) were uniformly dispersed in sodium alginate tissue representative phantoms. The thermal conductivity of phantoms containing CNTs was measured using a hot wire probe method. Increasing CNT concentration from 0 to 1.0 mg/mL caused the thermal conductivity of phantoms containing SWNTs, SWNHs, and MWNTs to increase by 24, 30, and 66%, respectively. For identical CNT concentrations, phantoms containing MWNTs possessed the highest thermal conductivity.

Keywords

Thermal properties Sodium alginate Carbon nanoparticle Thermal conductance Hyperthermia Laser therapy 

References

  1. 1.
    Anderson, R. R., and J. A. Parrish. The optics of human-skin. J. Invest. Dermatol. 77:13–19, 1981.PubMedCrossRefGoogle Scholar
  2. 2.
    Arkin, H., K. R. Holmes, M. M. Chen, and W. G. Bottje. Thermal pulse decay method for simultaneous measurement of local thermal conductivity and blood perfusion: a theoretical analysis. J. Biomech. Eng. 108:208–214, 1986.PubMedCrossRefGoogle Scholar
  3. 3.
    Bassil, A., P. Puech, L. Tubery, W. Bacsa, and E. Flahaut. Controlled laser heating of carbon nanotubes. Appl. Phys. Lett. 88:1731131–1731133, 2006.CrossRefGoogle Scholar
  4. 4.
    Bhattacharya, A., and R. L. Mahajan. Temperature dependence of thermal conductivity of biological tissues. Physiol. Meas. 24:769–783, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhavaraju, N. C., H. Cao, D. Y. Yuan, J. W. Valvano, and J. G. Webster. Measurement of directional thermal properties of biomaterials. IEEE Trans. Biomed. Eng. 48:261–267, 2001.PubMedCrossRefGoogle Scholar
  6. 6.
    Blackwell, J. H. A transient-flow method for determination of thermal constants of insulating materials in bulk part I—theory. J. Appl. Phys. 25:137–144, 1954.CrossRefGoogle Scholar
  7. 7.
    Brown, E., L. Hao, J. C. Gallop, and J. C. Macfarlane. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 87:0231071–0231073, 2005.CrossRefGoogle Scholar
  8. 8.
    Bryning, M. B., D. E. Milkie, M. F. Islam, J. M. Kikkawa, and A. G. Yodh. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87:161909, 2005.CrossRefGoogle Scholar
  9. 9.
    Burke, A., X. F. Ding, R. Singh, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. U.S.A. 106:12897–12902, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids (2nd ed.). Oxford: Clarendon Press, 1959.Google Scholar
  11. 11.
    Chen, M. M., K. R. Holmes, and V. Rupinskas. Pulse-decay method for measuring the thermal-conductivity of living tissues. J. Biomech. Eng. Trans. ASME 103:253–260, 1981.CrossRefGoogle Scholar
  12. 12.
    Clancy, T. C., and T. S. Gates. Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47:5990–5996, 2006.CrossRefGoogle Scholar
  13. 13.
    Cohen, M. L. Measurement of the thermal properties of human skin. A review. J. Investig. Dermatol. 69:333–338, 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    Dresselhaus, M. S., G. Dresselhaus, and P. C. Eklund. Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1996.Google Scholar
  15. 15.
    Ducharme, M. B., and P. Tikuisis. In vivo thermal conductivity of the human forearm tissues. J. Appl. Physiol. 70:2682–2690, 1991.PubMedGoogle Scholar
  16. 16.
    Eletskii, A. V. Transport properties of carbon nanotubes. Phys. Usp. 52:209–224, 2009.CrossRefGoogle Scholar
  17. 17.
    Fan, X., et al. Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18:195103, 2007.CrossRefGoogle Scholar
  18. 18.
    Figliola, R. S., and D. E. Beasley. Theory and Design for Mechanical Measurements (2nd ed.). Hoboken, NJ: John Wiley, 1995.Google Scholar
  19. 19.
    Fisher, J. W., S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 70:9855–9864, 2010.PubMedCrossRefGoogle Scholar
  20. 20.
    Fujii, M., X. Zhang, H. Xie, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95:065502, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Gao, L., X. Zhou, and Y. Ding. Effective thermal and electrical conductivity of carbon nanotube composites. Chem. Phys. Lett. 434:297–300, 2007.CrossRefGoogle Scholar
  22. 22.
    Gummow, R. J., and I. Sigalas. Generalised hot-wire technique for high pressure thermal conductivity measurements. J. Phys. E 21:442, 1988.CrossRefGoogle Scholar
  23. 23.
    Gun’kin, I., and N. Loginova. Effect of nature of organic solvent on the absorption spectrum of C60 fullerene. Russ. J. Gen. Chem. 76:1911–1913, 2006.CrossRefGoogle Scholar
  24. 24.
    Hill, J. E., J. D. Leitman, and J. E. Sunderland. Thermal conductivity of various meats. Food Technol. 21:1143–1148, 1967.Google Scholar
  25. 25.
    Hirsch, L. R., R. J. Stafford, J. A. Bankson, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100:13549–13554, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Holmes, K. R., and M. M. Chen. Local thermal conductivity of Para-7 fibrosarcoma in hamster. In: 1979 Advances in Bioengineering. New York: ASME, 1979, pp. 147–149.Google Scholar
  27. 27.
    Hone, J., M. Whitney, and A. Zettl. Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103:2498–2499, 1999.CrossRefGoogle Scholar
  28. 28.
    Huxtable, S. T., D. G. Cahill, S. Shenogin, et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2:731–734, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Iijima, S., M. Yudasaka, R. Yamada, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309:165–170, 1999.CrossRefGoogle Scholar
  30. 30.
    Kam, N. W. S., M. O’Connell, J. A. Wisdom, and H. J. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 102:11600–11605, 2005.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee, C. S. D., J. P. Gleghorn, N. Won Choi, M. Cabodi, A. D. Stroock, and L. J. Bonassar. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Levi-Polyachenko, N. H., D. L. Carroll, and J. H. Stewart. Applications of carbon-based nanomaterials for drug delivery in oncology. In: Medicinal Chemistry and Pharmacological Potential of Fullerences and Carbon Nanotubes, edited by F. Cataldo and T. Ros. Netherlands: Springer, 2008, pp. 223–266.Google Scholar
  33. 33.
    Liang, X. G., X. S. Ge, Y. P. Zhang, and G. J. Wang. A convenient method of measuring the thermal-conductivity of biological tissue. Phys. Med. Biol. 36:1599–1605, 1991.PubMedCrossRefGoogle Scholar
  34. 34.
    Merabia, S., S. Shenogin, L. Joly, P. Keblinski, and J.-L. Barrat. Heat transfer from nanoparticles: a corresponding state analysis. Proc. Natl. Acad. Sci. 106:15113–15118, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Miyako, E., H. Nagata, K. Hirano, K. Sakamoto, Y. Makita, K. Nakayama, and T. Hirotsu. Photoinduced antiviral carbon nanohorns. Nanotechnology 19:4751031–4751037, 2008.Google Scholar
  36. 36.
    Miyako, E., H. Nagata, K. Hirano, M. Makita, K. Nakayama, T. Hirotsu, et al. Near-infrared laser-triggered carbon nanohorns for selective elimination of microbes. Nanotechnology 18:4751031–4751037, 2007.Google Scholar
  37. 37.
    Miyawaki, J., M. Yudasaka, T. Azami, Y. Kubo, and S. Iijima. Toxicity of single-walled carbon nanohorns. ACS Nano 2:213–226, 2008.PubMedCrossRefGoogle Scholar
  38. 38.
    Moffat, R. J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1:3–17, 1988.CrossRefGoogle Scholar
  39. 39.
    Monteiro-Riviere, N. A., R. J. Nemanich, A. O. Inman, Y. Y. Y. Wang, and J. E. Riviere. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155:377–384, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Nan, C.-W., R. Birringer, D. R. Clarke, and H. Gleiter. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81:6692–6699, 1997.CrossRefGoogle Scholar
  41. 41.
    Nan, C. W., G. Liu, Y. H. Lin, and M. Li. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85:3549–3551, 2004.CrossRefGoogle Scholar
  42. 42.
    Nix, G. H., G. W. Lowery, R. I. Vachon, and G. E. Tanger. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. Process Aeronaut. Astronaut.: Thermophys. Spacecraft Planet. Bodies 20:865–878, 1967.Google Scholar
  43. 43.
    Poppendiek, H. F., R. Randall, J. A. Breeden, J. E. Chambers, and J. R. Murphy. Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology 3:318–327, 1966.CrossRefGoogle Scholar
  44. 44.
    Rafii-Tabar, H. Computational Physics of Carbon Nanotubes. Cambridge, UK: Cambridge University Press, 2008.Google Scholar
  45. 45.
    Sarkar, S., J. Fisher, C. Rylander, and M. N. Rylander. Photothermal response of tissue phantoms containing multi-walled carbon nanotubes. J. Biomech. Eng. 132:044505, 2010.PubMedCrossRefGoogle Scholar
  46. 46.
    Scheffy, W. J., and E. F. Johnson. Thermal conductivities of liquids at high temperatures. J. Chem. Eng. Data 6:245–249, 1961.CrossRefGoogle Scholar
  47. 47.
    Sun, Z., V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne, and J. N. Coleman. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 112:10692–10699, 2008.CrossRefGoogle Scholar
  48. 48.
    Sun, X., R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji. Broadband optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett. 73:3632–3634, 1998.CrossRefGoogle Scholar
  49. 49.
    Torti, S. V., F. Byrne, O. Whelan, et al. Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int. J. Nanomed. 2:707–714, 2007.Google Scholar
  50. 50.
    Touloukian, Y. S., P. E. Liley, and S. C. Saxena. Thermophysical Properties of Matter. New York: Plenum Publishing Corporation, 1970.Google Scholar
  51. 51.
    Valvano, J. W., J. R. Cochran, and K. R. Diller. Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int. J. Thermophys. 6:301–311, 1985.CrossRefGoogle Scholar
  52. 52.
    Warheit, D. B., B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77:117–125, 2004.PubMedCrossRefGoogle Scholar
  53. 53.
    White, B., S. Banerjee, S. O’Brien, N. J. Turro, and I. P. Herman. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 111:13684–13690, 2007.CrossRefGoogle Scholar
  54. 54.
    Whitney, J. R., S. Sarkar, J. Zhang, et al. Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43:43–51, 2011.PubMedCrossRefGoogle Scholar
  55. 55.
    Wong, M. Alginates in tissue engineering. In: Biopolymer Methods in Tissue Engineering, edited by Springerlink. New Jersey: Humana Press, Inc., 2003, pp. 77–86.Google Scholar
  56. 56.
    Yehia, H. N., R. K. Draper, C. Mikoryak, et al. Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5:8, 2007.CrossRefGoogle Scholar
  57. 57.
    Yi, W., L. Lu, Z. Dian-lin, Z. W. Pan, and S. S. Xie. Linear specific heat of carbon nanotubes. Phys. Rev. B 59:R9015, 1999.CrossRefGoogle Scholar
  58. 58.
    Yi, M., H. V. Panchawagh, R. J. Podhajsky, and R. L. Mahajan. Micromachined hot-wire thermal conductivity probe for biomedical applications. IEEE Trans. Biomed. Eng. 56:2477–2484, 2009.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang, H. F., L. Q. He, S. X. Cheng, Z. T. Zhai, and D. Y. Gao. A dual-thermistor probe for absolute measurement of thermal diffusivity and thermal conductivity by the heat pulse method. Meas. Sci. Technol. 14:1396–1401, 2003.CrossRefGoogle Scholar
  60. 60.
    Zhang, M., T. Murakami, K. Ajima, et al. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. U.S.A. 105:14773–14778, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Saugata Sarkar
    • 1
  • Kristen Zimmermann
    • 2
  • Weinan Leng
    • 3
  • Peter Vikesland
    • 3
  • Jianfei Zhang
    • 4
  • Harry Dorn
    • 4
  • Thomas Diller
    • 1
  • Christopher Rylander
    • 1
    • 2
  • Marissa Nichole Rylander
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.School of Biomedical Engineering and SciencesVirginia Tech-Wake Forrest UniversityBlacksburgUSA
  3. 3.Department of Civil and Environmental EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.Department of ChemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations