Advertisement

Annals of Biomedical Engineering

, Volume 39, Issue 6, pp 1728–1735 | Cite as

Whole-Body Cerenkov Luminescence Tomography with the Finite Element SP3 Method

  • Jianghong Zhong
  • Jie TianEmail author
  • Xin Yang
  • Chenghu Qin
Article

Abstract

Generation of an accurate Cerenkov luminescence imaging model is a current issue of nuclear tomography with optical techniques. The article takes a pro-active approach toward whole-body Cerenkov luminescence tomography. The finite element framework employs the equation of radiative transfer via the third-order simplified spherical harmonics approximation to model Cerenkov photon propagation in a small animal. After this forward model is performed on a digital mouse with optical property heterogeneity and compared with the Monte Carlo method, we investigated the whole body reconstruction algorithm along a regularization path via coordinate descent. The endpoint of the follow-up study is the in vivo application, which provides three-dimensional biodistribution of the radiotracer uptake in the mouse from measured partial boundary currents. The combination of the forward and inverse model with elastic-net penalties is not only validated by numerical simulation, but it also effectively demonstrates in vivo imaging in small animals. Our exact reconstruction method enables optical molecular imaging to best utilize Cerenkov radiation emission from the decay of medical isotopes in tissues.

Keywords

Cerenkov Mathematical model Light propagation in tissues Tomography Molecular imaging 

Notes

Acknowledgments

This article is supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB707700, the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No. KGCX2-YW-907, the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education (PCSIRT) under Grant No. IRT0645, the Hundred Talents Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China under Grant Nos. 81027002, 81071205, and the Science and Technology Key Project of Beijing Municipal Education Commission under Grant No. KZ200910005005.

References

  1. 1.
    Arridge, S. R., and J. C. Schotland. Optical tomography: forward and inverse problems. Inverse Probl. 25:123010, 2009.CrossRefGoogle Scholar
  2. 2.
    Fortmann, T. E. A matrix inversion identity. IEEE. Trans. Autom. Control AC-15:599, 1970.CrossRefGoogle Scholar
  3. 3.
    Friedman, J. H., T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33:1–22, 2010.PubMedGoogle Scholar
  4. 4.
    Jelley, J. V. Cerenkov radiation and its application. Br. J. Appl. Phys. 6:227–232, 1955.CrossRefGoogle Scholar
  5. 5.
    Klose, A. D., and B. J. Beattie. Bioluminescence tomography with SP3 equations. In: OSA Topical Meetings: Biomedical Optics, St. Petersburg, FL, USA, March 15–20, BMC8, 2008.Google Scholar
  6. 6.
    Klose, A. D., and E. W. Larsen. Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 220:441–470, 2006.CrossRefGoogle Scholar
  7. 7.
    Li, C., G. S. Mitchell, and S. R. Cherry. Cerenkov luminescence tomography for small animal imaging. Opt. Lett. 35:1109–1111, 2010.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, K., Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt. Express. 18:20988–21002, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, H., G. Ren, S. Liu, X. Zhang, L. Chen, P. Han, and Z. Cheng. Optical imaging of reporter gene expression using a positron-emission-tomography probe. J. Biomed. Opt. 15:060505, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu, H. G., G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng. Molecular optical imaging with radioactive probes. PLoS One 5:e9470, 2010.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, H., X. Zhang, B. Xing, P. Han, S. S. Gambhir, and Z. Cheng. Radiation luminescence excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091, 2010.PubMedCrossRefGoogle Scholar
  12. 12.
    Lu, Y., A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou. Spectrally-resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation. Phys. Med. Biol. 54:6477–6493, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Pysz, M. A., S. S. Gambhir, and J. K. Willmann. Molecular imaging: current status and emerging strategies. Clin. Radiol. 65:500–516, 2010.PubMedCrossRefGoogle Scholar
  14. 14.
    Reiner, B. I. N., N. Knight, and E. L. Siegel. Radiology reporting, past, present, and future: the radiologist’s perspective. J. Am. Coll. Radiol. 4:313–319, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Ren, N., J. Liang, X. Qu, J. Li, B. Lu, and J. Tian. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt. Express. 18:6811–6823, 2010.PubMedCrossRefGoogle Scholar
  16. 16.
    Robertson, R., M. S. Germannos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 54:N355–N365, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Ruggiero, A., J. P. Holland, J. S. Lewis, and J. Grimm. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 51:1123–1130, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Spinelli, A. E., D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys. Med. Biol. 55:483–495, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Tian, J., J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang. Multimodality molecular imaging. IEEE Eng. Med. Biol. Mag. 27:48–57, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao, H., F. Gao, Y. Tanikawa, and Y. Yamada. Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging. J. Biomed. Opt. 12:062107, 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu, S., J. Tian, G. Yan, C. Qin, and J. Feng. Cone beam micro-CT system for small animal imaging and performance evaluation. Int. J. Biomed. Imaging 2009:960573, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Jianghong Zhong
    • 1
  • Jie Tian
    • 1
    Email author
  • Xin Yang
    • 1
  • Chenghu Qin
    • 1
  1. 1.Medical Image Processing Group, Institute of AutomationChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations