Annals of Biomedical Engineering

, Volume 39, Issue 6, pp 1643–1653 | Cite as

X-ray Velocimetry and Haemodynamic Forces Within a Stenosed Femoral Model at Physiological Flow Rates

  • R. Aidan Jamison
  • Stephen Dubsky
  • Karen K. W. Siu
  • Kerry Hourigan
  • Andreas Fouras


High resolution in vivo velocity measurements within the cardiovascular system are essential for accurate calculation of vessel wall shear stress, a highly influential factor for the progression of arterial disease. Unfortunately, currently available techniques for in vivo imaging are unable to provide the temporal resolution required for velocity measurement at physiological flow rates. Advances in technology and improvements in imaging systems are allowing a relatively new technique, X-ray velocimetry, to become a viable tool for such measurements. This study investigates the haemodynamics of pulsatile blood flow in an optically opaque in vitro model at physiological flow rates using X-ray velocimetry. The in vitro model, an asymmetric stenosis, is designed as a 3:1 femoral artery with the diameter and flow rate replicating vasculature of a mouse. Velocity measurements are obtained over multiple cycles of the periodic flow at high temporal and spatial resolution (1 ms and 29 μm, respectively) allowing accurate measurement of the velocity gradients and calculation of the wall shear stress. This study clearly illustrates the capability of in vitro X-ray velocimetry, suggesting it as a possible measurement technique for future in vivo vascular wall shear stress measurement.


Particle image velocimetry Synchrotron imaging Wall shear stress 



The authors gratefully acknowledge the support of the Japan Synchrotron Radiation Research Institute (JASRI) (under Proposal No. SP2009B1910). The authors would like to thank Yoshio Suzuki, Akihisa Takeuchi and Kentaro Uesugi (SPring-8/JASRI) for their assistance with the experiments. Support from the Australian Research Council (Grant Nos. DP0877327, DP0987643) is also gratefully acknowledged.


  1. 1.
    Adrian, R. J. Particle-imaging techniques for experimental fluid-Mechanics. Annu. Rev. Fluid Mech. 23:261–304, 1991.CrossRefGoogle Scholar
  2. 2.
    Augst, A. D., D. C. Barratt, A. D. Hughes, F. P. Glor, S. A. M. Thom and X. Y. Xu. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images. J. Biomech. Eng. Trans. ASME 125:218–222, 2003.CrossRefGoogle Scholar
  3. 3.
    Baek H., M. V. Jayaraman, and G. E. Karniadakis. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation. Ann. Biomed. Eng. 37(12):2469–2487, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Benveniste, H., and S. Blackband. MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog. Neurobiol. 67:393–420, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng, C., D. Tempel, R. van Haperen, A. van der Bann, F. Grosveld, M. J. A. P. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006.PubMedCrossRefGoogle Scholar
  6. 6.
    Chytilova, E., J. Malik, Z. Kasalova, R. Dolezalova, T. Stulc, and R. Ceska. Lower wall shear rate of the common carotid artery in treated type 2 diabetes mellitus with metabolic syndrome. Physiol. Res. 58:185–191, 2009.PubMedGoogle Scholar
  7. 7.
    Davis, T. J., D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598, 1995.CrossRefGoogle Scholar
  8. 8.
    Dubsky, S., R. A. Jamison, S. C. Irvine, K. K. W. Siu, K. Hourigan, and A. Fouras. Computed tomographic X-ray velocimetry. Appl. Phys. Lett. 96:023702, 2010.CrossRefGoogle Scholar
  9. 9.
    Dubsky, S., R. A. Jamison, S. P. A. Higgins, K. K. W. Siu, K. Hourigan, and A. Fouras. Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels. Exp. Fluids, 2010. doi: 10.1007/s00348-010-1006-x
  10. 10.
    Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. Trans. ASME 130(2):021015, 2008.CrossRefGoogle Scholar
  11. 11.
    Forouhar, A. S., M. Liebling, A. Hickerson, A. Nasiraei-Moghaddam, H. Tsai, J. R. Hove, S. E. Fraser, M. E. Dickinson, and M. Gharib. The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Fouras, A., J. Dusting, R. Lewis, and K. Hourigan. Three-dimensional synchrotron X-ray particle image velocimetry. J. Appl. Phys. 102:064916, 2007.CrossRefGoogle Scholar
  13. 13.
    Fouras, A., M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan. The past, present, and future of X-ray technology for in vivo imaging of function and form. J. Appl. Phys. 105:102009, 2009.CrossRefGoogle Scholar
  14. 14.
    Fouras, A., D. Lo Jacono, and K. Hourigan. Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44(2):317–329, 2008.CrossRefGoogle Scholar
  15. 15.
    Fouras, A., and J. Soria. Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp. Fluids 25:409–430, 1998.CrossRefGoogle Scholar
  16. 16.
    Griffith, M. D., T. Leweke, M. C. Thompson, and K. Hourigan. Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622:291–320, 2009.CrossRefGoogle Scholar
  17. 17.
    Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. Trans. ASME 128:844–851, 2006.CrossRefGoogle Scholar
  18. 18.
    Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Irvine, S. C., D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras. Phase retrieval for improved three-dimensional velocimetry of dynamic X-ray blood speckle. Appl. Phys. Lett. 93:153901, 2008.CrossRefGoogle Scholar
  20. 20.
    Irvine, S. C., D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras. Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle. Opt. Exp. 18:2368–2379, 2010.CrossRefGoogle Scholar
  21. 21.
    Kim, G. B., and S. J. Lee. X-ray PIV measurements of blood flows without tracer particles. Exp. Fluids 41:195–200, 2006.CrossRefGoogle Scholar
  22. 22.
    Kim, G. B, N. Y. Lim, and S. J. Lee. Hollow microcapsules for sensing micro-scale flow motion in X-ray imaging method. Microfluid. Nanofluid. 6:419–424, 2009.CrossRefGoogle Scholar
  23. 23.
    Kim, M., D. B. Taulbee, M. Tremmel, and H. Meng. Comparison of two stents in modifying cerebral aneurysm hemodynamics. Ann. Biomed. Eng. 36(5):726–741, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Ku, J. P., M. T. Draney, F. R. Arko, A. Lee, F. P. Chan, N. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30:743–752, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, J. Y., H. S. Ji, and S. J. Lee. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos. Physiol. Meas. 28:1149–1162, 2007.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, S. J., S. Y. Jung, and S. Ahn. Flow tracing microparticle sensors designed for enhanced X-ray contrast. Biosens. Bioelectron. 25:1571–1578, 2010.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee, S. J., and G. B. Kim. X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J. Appl. Phys. 94:3620–3623, 2003.CrossRefGoogle Scholar
  28. 28.
    Lee, S. J., and G. B. Kim. Synchrotron microimaging technique for measuring the velocity fields of real blood flows. J. Appl. Phys. 97:064701, 2005CrossRefGoogle Scholar
  29. 29.
    Li, M. X., J. J. Beech-Brandt, L. R. John, P. R. Hoskins, and W. J. Easso. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J. Biomech. 40:3715–3724, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Morgan, K. S., S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu. Measurement of hard X-ray coherence in the presence of a rotating random-phase-screen diffuser. Opt. Commun. 283:216–225, 2010.CrossRefGoogle Scholar
  31. 31.
    Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562, 2002.Google Scholar
  32. 32.
    Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: Is it reasonable to assume fully developed flow? J. Biomech. Eng. Trans. ASME 128:371–379, 2006.CrossRefGoogle Scholar
  33. 33.
    Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Poelma, C., V. Heiden, B. P. Hiereck, R. E. Poelmann, and J. Westerweel. Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J. R. Soc. Interface 7:91–103, 2010.Google Scholar
  35. 35.
    Poelma, C., J. M. Mari, N. Foin, M. X. Tang, R. Krams, C. G. Caro, P. D. Weinberg, and J. Westerweel. 3D Flow reconstruction using ultrasound PIV. Exp. Fluids, 2009. doi: 10.1007/s00348-009-0781-8.
  36. 36.
    Poelma, C., P. Vennemann, R. Lindken, and J. Westerweel. In vivo blood flow and wall shear stress measurements in the vitelline network. Exp. Fluids 45:703–713, 2008CrossRefGoogle Scholar
  37. 37.
    Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress–an important determinant of endothelial cell function and structure—in the arterial system in vivo. J. Vasc. Res. 43:251–269, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Rosencranz, R., and S. A. Bogen. Clinical laboratory measurement of serum, plasma, and blood viscosity. Pathol. Patterns Rev. 125:S78–S86, 2006.CrossRefGoogle Scholar
  39. 39.
    Ross R. Cell biology of atherosclerosis. Annu. Rev. Physiol. 57:791–804, 1995.PubMedCrossRefGoogle Scholar
  40. 40.
    Sheard, G. J. Flow dynamics and wall shear-stress variation in a fusiform aneurysm. J. Eng. Math. 64:379–390, 2009.CrossRefGoogle Scholar
  41. 41.
    Smith, M. L., D. S. Long, E. R. Damiano, and K. Ley. Near-wall μ-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85:637–645, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Sugii, Y., S. Nishio, and K. Okamoto. In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol. Meas. 23:403–416, 2002.PubMedCrossRefGoogle Scholar
  43. 43.
    Texon M. Hemodynamic concept of atherosclerosis. Am. J. Cardiol. 5:291–294, 1960.CrossRefGoogle Scholar
  44. 44.
    Theunissen, R., F. Scarano, and M. L. Riethmuller. Spatially adaptive PIV interrogation based on data ensemble. Exp. Fluids 48:875–887, 2010.CrossRefGoogle Scholar
  45. 45.
    Thomas S. M. The current role of catheter angiography. Imaging 13:366–375, 2001.Google Scholar
  46. 46.
    Vennemann, P., K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J. Biomech. 39:1191–1200, 2006.PubMedCrossRefGoogle Scholar
  47. 47.
    Vennemann, P., R. Lindken, and J. Westerweel. In vivo whole-field blood velocity measurement techniques. Exp. Fluids 42:495–511, 2007.CrossRefGoogle Scholar
  48. 48.
    Wang, Y., X. Liu, K. Im, W. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman. Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nat. Phys. 4:305–309, 2008.CrossRefGoogle Scholar
  49. 49.
    Wen, C. Y., A. S. Yang, L. Y. Tseng, and J. W. Chai. Investigation of pulsatile flowfield in healthy thoracic aorta models. Ann. Biomed. Eng. 38(2):391–402, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • R. Aidan Jamison
    • 1
    • 2
  • Stephen Dubsky
    • 1
    • 2
  • Karen K. W. Siu
    • 3
  • Kerry Hourigan
    • 1
    • 2
  • Andreas Fouras
    • 1
  1. 1.Division of Biological EngineeringMonash UniversityVictoriaAustralia
  2. 2.Department of Mechanical EngineeringMonash UniversityVictoriaAustralia
  3. 3.School of PhysicsMonash UniversityVictoriaAustralia

Personalised recommendations