Annals of Biomedical Engineering

, Volume 39, Issue 5, pp 1546–1554 | Cite as

A Preliminary Study of Bending Stiffness Alteration in Shape Changing Nitinol Plates for Fracture Fixation

  • Gavin Olender
  • Ronny Pfeifer
  • Christian W. Müller
  • Thomas Gösling
  • Stephan Barcikowski
  • Christof Hurschler


Nitinol is a promising biomaterial based on its remarkable shape changing capacity, biocompatibility, and resilient mechanical properties. Until now, very limited applications have been tested for the use of Nitinol plates for fracture fixation in orthopaedics. Newly designed fracture-fixation plates are tested by four-point bending to examine a change in equivalent bending stiffness before and after shape transformation. The goal of stiffness alterable bone plates is to optimize the healing process during osteosynthesis in situ that is customized in time of onset, percent change as well as being performed non-invasively for the patient. The equivalent bending stiffness in plates of varying thicknesses changed before and after shape transformation in the range of 24–73% (p values <0.05 for all tests). Tests on a Nitinol plate of 3.0 mm increased in stiffness from 0.81 to 0.98 Nm2 (corresponding standard deviation 0.08 and 0.05) and shared a good correlation to results from numerical calculation. The stiffness of the tested fracture-fixation plates can be altered in a consistent matter that would be predicted by determining the change of the cross-sectional area moment of inertia.


Nitinol Equivalent stiffness SME 


  1. 1.
    Augat, P., U. Simon, A. Liedert, and L. Claes. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos. Int. 16(Suppl 2):S36–S43, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Bottlang, M., M. Lesser, J. Koerber, J. Doornink, R. B. von, P. Augat, D. C. Fitzpatrick, S. M. Madey, and J. L. Marsh. Far cortical locking can improve healing of fractures stabilized with locking plates. J. Bone Joint Surg. Am. 92:1652–1660, 2010.PubMedCrossRefGoogle Scholar
  3. 3.
    Braun, J. T., J. L. Hines, E. Akyuz, C. Vallera, and J. W. Ogilvie. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis. Spine (Phila Pa 1976) 31:1776–1782, 2006.Google Scholar
  4. 4.
    Chen, G., F. Niemeyer, T. Wehner, U. Simon, M. A. Schuetz, M. J. Pearcy, and L. E. Claes. Simulation of the nutrient supply in fracture healing. J. Biomech. 42:2575–2583, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Claes, L., R. Blakytny, M. Gockelmann, M. Schoen, A. Ignatius, and B. Willie. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J. Orthop. Res. 27:22–27, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Claes, L. E., H. J. Wilke, P. Augat, S. Rubenacker, and K. J. Margevicius. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin. Biomech. (Bristol, Avon) 10:227–234, 1995.CrossRefGoogle Scholar
  7. 7.
    Epari, D. R., H. Schell, H. J. Bail, and G. N. Duda. Instability prolongs the chondral phase during bone healing in sheep. Bone 38:864–870, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Gardner, M. J., S. E. Nork, P. Huber, and J. C. Krieg. Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury 41:652–656, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Gautier, E., and C. Sommer. Guidelines for the clinical application of the LCP. Injury 34(Suppl 2):B63–B76, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Grigoriev, I. S., E. Z. Meilikov, and A. A. Radzig. Friction, Chapter 6. In: Handbook of Physical Quantities, 1st edn. CRC Press, 1997, pp. 147–156. ISBN: 0-8493-2861-6.Google Scholar
  11. 11.
    Hontzsch, D., and S. Weller. External fixation of bones (fixateur externe) in fracture treatment. Versicherungsmedizin 48:96–100, 1996.PubMedGoogle Scholar
  12. 12.
    Kauffman, G. B., and I. Mayo. The story of nitinol: the serendipitous discovery of the memory metal and its applications. Chem. Educator 2:1–21, 1996.CrossRefGoogle Scholar
  13. 13.
    Lienau, J., H. Schell, G. N. Duda, P. Seebeck, S. Muchow, and H. J. Bail. Initial vascularization and tissue differentiation are influenced by fixation stability. J. Orthop. Res. 23:639–645, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Müller, C. W., R. Pfeifer, T. El-Kashef, C. Hurschler, D. Herzog, C. Krettek, and T. Gösling. Electromagnetic induction heating of an orthopaedic nickel-titanium shape memory device. J Orthop Res 21:110, 2010.Google Scholar
  15. 15.
    Otsuka, K., and T. Kakeshita. Science and technology of shape-memory alloys: new developments. MRS Bull. 27:91–100, 2002.CrossRefGoogle Scholar
  16. 16.
    Pandis, N., A. Polychronopoulou, and T. Eliades. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial. Am. J. Orthod. Dentofacial Orthop. 136:152–157, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Peitsch, T., A. Klocke, B. Kahl-Nieke, O. Prymak, and M. Epple. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation. J. Biomed. Mater. Res. A 82:731–739, 2007.PubMedGoogle Scholar
  18. 18.
    Pelton, A. R., V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfeifer, R., D. Herzog, M. Hustedt, and S. Barcikowski. Pulsed ND:YAG laser cutting of NiTi shape memory alloys—influence of process parameters. J Mater Process Technol 21:110, 2010.Google Scholar
  20. 20.
    Pfeifer, R., D. Herzog, and O. Meier. Laser welding of shape memory alloys for medical applications. In: International Congress on Applications of Lasers & Electro-Optics, 2008, pp. 288–294.Google Scholar
  21. 21.
    Prymak, O., D. Bogdanski, M. Koller, S. A. Esenwein, G. Muhr, F. Beckmann, T. Donath, M. Assad, and M. Epple. Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy. Biomaterials 26:5801–5807, 2005.PubMedCrossRefGoogle Scholar
  22. 22.
    Stoffel, K., G. Booth, S. M. Rohrl, and M. Kuster. A comparison of conventional versus locking plates in intraarticular calcaneus fractures: a biomechanical study in human cadavers. Clin. Biomech. (Bristol, Avon) 22:100–105, 2007.CrossRefGoogle Scholar
  23. 23.
    Tang, R. G., K. R. Dai, and Y. Q. Chen. Application of a NiTi staple in the metatarsal osteotomy. Biomed. Mater. Eng. 6:307–312, 1996.PubMedGoogle Scholar
  24. 24.
    Tarnita, D., D. N. Tarnita, L. Hacman, C. Copilus, and C. Berceanu. In vitro experiment of the modular orthopedic plate based on Nitinol, used for human radius bone fractures. Rom. J. Morphol. Embryol. 51:315–320, 2010.PubMedGoogle Scholar
  25. 25.
    Verschuur, E. M., A. Repici, E. J. Kuipers, E. W. Steyerberg, and P. D. Siersema. New design esophageal stents for the palliation of dysphagia from esophageal or gastric cardia cancer: a randomized trial. Am. J. Gastroenterol. 103:304–312, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Wever, D. J., J. A. Elstrodt, A. G. Veldhuizen, and J. R. Horn. Scoliosis correction with shape-memory metal: results of an experimental study. Eur. Spine J. 11:100–106, 2002.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu, W., M. Qi, X. P. Liu, D. Z. Yang, and W. Q. Wang. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. J. Biomech. 40:3034–3040, 2007.PubMedCrossRefGoogle Scholar
  28. 28.
    Xiong, Y., Y. Zhao, Z. Wang, Q. Du, W. Chen, and A. Wang. Comparison of a new minimum contact locking plate and the limited contact dynamic compression plate in an osteoporotic fracture model. Int Orthop 33:1415–1419, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Gavin Olender
    • 1
  • Ronny Pfeifer
    • 2
  • Christian W. Müller
    • 3
  • Thomas Gösling
    • 3
  • Stephan Barcikowski
    • 2
  • Christof Hurschler
    • 1
  1. 1.Laboratory for Biomechanics and Biomaterials, Department of OrthopaedicsHannover Medical SchoolHannoverGermany
  2. 2.Laser Zentrum HannoverHannoverGermany
  3. 3.Trauma DepartmentHannover Medical SchoolHannoverGermany

Personalised recommendations