Annals of Biomedical Engineering

, Volume 39, Issue 5, pp 1582–1591

A Spin-Drying Technique for Lyopreservation of Mammalian Cells

  • Nilay Chakraborty
  • Anthony Chang
  • Heidi Elmoazzen
  • Michael A. Menze
  • Steven C. Hand
  • Mehmet Toner


Stabilization of cellular material in the presence of glass-forming sugars at ambient temperatures is a viable approach that has many potential advantages over current cryogenic strategies. Experimental evidence indicates the possibility to preserve biomolecules in glassy matrices of low-molecular mobility using “glass-forming” sugars like trehalose at ambient temperatures. However, when cells are desiccated in trehalose solution using passive drying techniques, a glassy skin is formed at the liquid/vapor interface of the sample. This glassy skin prevents desiccation of the sample beyond a certain level of dryness and induces non-uniformities in the final water content. Cells trapped underneath this glassy skin may degrade due to a relatively high molecular mobility in the sample. This undesirable result underscores the need for development of a uniform, fast drying technique. In the present study, we report a new technique based on the principles of “spin drying” that can effectively address these problems. Forced convective evaporation of water along with the loss of solution due to centrifugal force leads to rapid vitrification of a thin layer of trehalose containing medium that remains on top of cells attached to the spinning glass substrate. The glassy layer produced has a consistent thickness and a small “surface-area-to-volume” ratio that minimizes any non-homogeneity. Thus, the chance of entrapping cells in a high-mobility environment decreases substantially. We compared numerical predictions to experimental observations of the drying time of 0.2–0.6 M trehalose solutions at a variety of spinning speeds ranging from 1000 to 4000 rpm. The model developed here predicts the formation of sugar films with thicknesses of 200–1000 nm, which was in good agreement with experimental results. Preliminary data suggest that after spin drying cells to about 0.159 ± 0.09 gH2O/gdw (n = 11, ±SE), more than 95% of cells were able to preserve their membrane integrity. Membrane integrity after spin drying is therefore considerably higher than what is achieved by conventional drying methods; where about 90% of cells lose membrane integrity at 0.4 gH2O/gdw (Acker et al. Cell Preserv. Technol. 1(2):129–140, 2002; Elliott et al. Biopreserv. Biobank. 6(4):253–260, 2009).


Lyopreservation Spin drying Vitrification Trehalose 


  1. 1.
    Acker, J., T. Chen, A. Fowler, and M. Toner. Engineering desiccation tolerance in mammalian cells: tools and techniques. In: Life in Frozen State, edited by B. Fuller, N. Lane, and E. Benson. Boca Raton, FL: CRC Press, 2004, pp. 563–580.CrossRefGoogle Scholar
  2. 2.
    Acker, J. P., A. Fowler, B. Lauman, S. Cheley, and M. Toner. Survival of desiccated mammalian cells: beneficial effects of isotonic media. Cell Preserv. Technol. 1(2):129–140, 2002.CrossRefGoogle Scholar
  3. 3.
    Adams, D. R., M. Toner, and R. Langer. Role of trehalose in prevention of giant vesicle adsorption and encapsulated solute leakage in anhydrobiotic preservation. Langmuir 23(26):13013–13023, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Aksan, A., S. C. Morris, and M. Toner. Analysis of desiccation and vitrification characteristics of carbohydrate films by shear-wave resonators. Langmuir 21(7):2847–2854, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Aksan, A., and M. Toner. Isothermal drying kinetics and vitrification of trehalose-dextran solutions. Langmuir 20(13):5521–5529, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Aksan, A., and M. Toner. Roles of thermodynamic state and molecular mobility in biopreservation. In: The Biomedical Engineering Handbook, Vol. 3, edited by J. D. Bronzino. Boca Raton, FL: Taylor and Francis, 2006, pp. 41-1–41-20.Google Scholar
  7. 7.
    Baust, J. M., A. Fowler, and M. Toner. Effect of cell substrate interactions on the desiccation behavior of human fibroblasts. Cell Preserv. Technol. 2(3):188–197, 2004CrossRefGoogle Scholar
  8. 8.
    Becker, M. J., and A. I. Rapoport. Conservation of yeasts by dehydration. Adv. Biochem. Eng. Biotechnol. 35:127–171, 1987.Google Scholar
  9. 9.
    Bieganski, R. M., A. Fowler, J. R. Morgan, and M. Toner. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol. Prog. 14:615–620, 1998.PubMedCrossRefGoogle Scholar
  10. 10.
    Birnie, D. P. Surface skin development and rupture during sol–gel spin coating. J. Sol-Gel. Sci. Technol. 31:225–228, 2004.CrossRefGoogle Scholar
  11. 11.
    Birnie, D. P., and M. Manley. Combined flow and evaporation of fluid on a spinning disk. Phys. Fluids 9:870–875, 1997.CrossRefGoogle Scholar
  12. 12.
    Bornside, D. E., C. W. Macosko, and L. E. Scriven. Spin coating: one-dimensional model. J. Appl. Phys. 66(11):5185–5193, 1989.CrossRefGoogle Scholar
  13. 13.
    Brockbank, G. M., and M. J. Taylor. Tissue preservation. In: Advances in Biopreservation, edited by J. G. Baust, and J. M. Baust. New York, NY: Taylor and Francis, 2006, pp. 157–196.CrossRefGoogle Scholar
  14. 14.
    Buchanan, S. S., M. A. Menze, S. C. Hand, D. W. Pyatt, and J. F. Carpenter. Cryopreservation of human hematopoietic stem and progenitor cells loaded with trehalose: transient permeabilization via the adenosine triphosphate-dependent P2Z receptor channel. Cell Preserv. Technol. 3(4):212–222, 2005.CrossRefGoogle Scholar
  15. 15.
    Chakraborty, N., D. Biswas, and G. D. Elliott. A simple mechanistic way to increase the survival of mammalian cells during processing for dry storage. Biopreserv. Biobank. 8(2):107–114, 2010.CrossRefGoogle Scholar
  16. 16.
    Chakraborty, N., D. Biswas, W. Parker, P. Moyer, and G. D. Elliott. A role for microwave processing in the dry preservation of mammalian cells. Biotechnol. Bioeng. 100(4):782–796, 2008.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, T., J. P. Acker, A. Eroglu, S. Cheley, H. Bayley, A. Flower, and M. Toner. Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology 43:168–181, 2001.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, T., S. Bhowmick, A. Sputtek, A. Fowler, and M. Toner. The glass transition temperature of mixtures of trehalose and hydroxyethyl starch. Cryobiology 44:301–306, 2002.PubMedCrossRefGoogle Scholar
  19. 19.
    Crowe, J. H., and L. M. Crowe. Preservation of mammalian cells—learning nature’s tricks. Nat. Biotechnol. 18:145–146, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Winstorm. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10, 1987.PubMedGoogle Scholar
  21. 21.
    Crowe, J. H., L. M. Crowe, and F. A. Hoekstra. Phase transitions and permeability changes in dry membranes during rehydration. J. Bioenergy Biomembr. 21:77–91, 1989.CrossRefGoogle Scholar
  22. 22.
    Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. Anhydrobiosis. Annu. Rev. Physiol. 54:579–599, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Crowe, J. H., A. E. Oliver, F. A. Hoekstra, and L. M. Crowe. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 3:20–30, 1997.CrossRefGoogle Scholar
  24. 24.
    Cuber, R., E. C. A. Eleutherio, M. D. Pereira, and A. D. Panek. The role of the trehalose transporter during germination. Biochim. Biophys. Acta Biomembr. 1330(2):165–171, 1997.CrossRefGoogle Scholar
  25. 25.
    Deegan, R. D. Pattern formation in drying drops. Phys. Rev. E 61:475–485, 2000.CrossRefGoogle Scholar
  26. 26.
    Deegan, R. D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829, 1997.CrossRefGoogle Scholar
  27. 27.
    Deegan, R. D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Contact line deposits in an evaporating drop. Phys. Rev. E 62:756–765, 2000.CrossRefGoogle Scholar
  28. 28.
    Elliott, G., N. Chakraborty, and D. Biswas. Anhydrous preservation of mammalian cells: cumulative osmotic stress analysis. Biopreserv. Biobank. 6(4):253–260, 2009.CrossRefGoogle Scholar
  29. 29.
    Elliott, G., X.-H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner. Trehalose uptake through P2X7 purinergic channels provides dehydration protection. Cryobiology 52:114–127, 2006.PubMedCrossRefGoogle Scholar
  30. 30.
    Ernslie, A. G., F. T. Bonner, and C. G. Peck. Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29:858–862, 1958.CrossRefGoogle Scholar
  31. 31.
    Eroglu, A., M. Russo, R. Bieganski, A. Fowler, S. Cheley, H. Bayley, and M. Toner. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18:163–167, 2000.PubMedCrossRefGoogle Scholar
  32. 32.
    Flack, W. W., D. S. Soong, A. T. Bell, and D. W. Hess. A mathematical model for spin coating of polymer resists. J. Appl. Phys. 56(4):1199–1206, 1984.CrossRefGoogle Scholar
  33. 33.
    Guo, N., I. Puhlev, D. R. Brown, J. Mansbridge, and F. Levine. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18(2):168–171, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Hall, D. D., P. Underhill, and J. M. Torkelson. Spin coating of thin and ultrathin polymer films. Polym. Eng. Sci. 38(12):2039–2045, 1998.CrossRefGoogle Scholar
  35. 35.
    He, X., A. Fowler, and M. Toner. Water activity and mobility in solutions of glycerol and small molecular weight sugars: implication for cryo- and lyopreservation. J. Appl. Phys. 100:074702, 2006.CrossRefGoogle Scholar
  36. 36.
    Holovati, J. L., and J. P. Acker. Spectrophotometric measurement of intraliposomal trehalose. Cryobiology 55(22):98–107, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Karlsson, J. O. M., and M. Toner. Long-term storage of tissues by cryopreservation. Biomaterials 17:243–256, 1996.PubMedCrossRefGoogle Scholar
  38. 38.
    Kikawada, T., A. Saito, and Y. Kanamori. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl. Acad. Sci. USA 104(28):11585–11590, 2007.PubMedCrossRefGoogle Scholar
  39. 39.
    Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920–926, 1993.PubMedCrossRefGoogle Scholar
  40. 40.
    Ma, X., K. Jamil, T. H. Macrae, J. S. Clegg, J. M. Russell, T. S. Villeneuse, M. Euloth, Y. Sun, J. H. Crowe, F. Tablin, and A. E. Oliver. A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51:15–28, 2005.PubMedCrossRefGoogle Scholar
  41. 41.
    Maryman, H. T. Drying of living mammalian cells. Ann. N. Y. Acad. Sci. 85:729–734, 2006.CrossRefGoogle Scholar
  42. 42.
    Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247(Cell Physiol., 16):C125–C142, 1984.Google Scholar
  43. 43.
    Meyerhofer, D. Characteristic of resist films produced by spinning. J. Appl. Phys. 49(7):3993–3997, 1978.CrossRefGoogle Scholar
  44. 44.
    Mittal, S., and R. V. Devireddy. Nanoscale measurements of water loss during desiccation of biological cell suspensions. Symposium Y, Proceedings of Materials Research Society, 2004.Google Scholar
  45. 45.
    Oliver, A. E., K. Jmil, J. H. Crowe, and F. Tablin. Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv. Technol. 2:35–49, 2004.CrossRefGoogle Scholar
  46. 46.
    Poirier, I., P.-A. Marechal, S. Richard, and P. Gervais. Saccharomyces cerevisiae viability is strongly dependent on rehydration kinetics and the temperature of dried cells. J. Appl. Microbiol. 86:87–92, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58:755–805, 1994.PubMedGoogle Scholar
  48. 48.
    Réategui E. E. and A. J. Fowler. Desiccation of nucleated mammalian cells in nano-liter droplets. Chem. Eng. Res. Des. 86:1187–1195, 2008.CrossRefGoogle Scholar
  49. 49.
    Shimoji, S. A new analytical model of spin coating process with solvent evaporation. Jpn. J. Appl. Phys. 26(6):L905–L907, 1987.CrossRefGoogle Scholar
  50. 50.
    Shimoji, S. Numerical analysis of the spin‐coating process. J. Appl. Phys. 66:2712–2718, 1989.CrossRefGoogle Scholar
  51. 51.
    Webb, S. J. Bound Water in Biological Integrity. Springfield, IL: C.C. Thomas, 1965.Google Scholar
  52. 52.
    Wolkers, W. F., N. J. Walker, F. Tablin, and J. H. Crowe. Human platelets loaded with trehalose survive freeze drying. Cryobiology 42:79–87, 2001.PubMedCrossRefGoogle Scholar
  53. 53.
    Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. Living with water stress: evolution of osmolyte systems. Science 217:1214–1222, 1982.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Nilay Chakraborty
    • 1
  • Anthony Chang
    • 1
  • Heidi Elmoazzen
    • 1
  • Michael A. Menze
    • 3
  • Steven C. Hand
    • 2
  • Mehmet Toner
    • 1
  1. 1.Center for Engineering in Medicine, BioMEMS Resource CenterMassachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital for ChildrenBostonUSA
  2. 2.Division of Cellular, Developmental, and Integrative Biology, Department of Biological SciencesLouisiana State UniversityLAUSA
  3. 3.Department of Biological SciencesEastern Illinois UniversityCharlestonUSA

Personalised recommendations